MMDetection3D中PointPillars模型FLOPs计算问题解析
2025-06-06 19:28:00作者:昌雅子Ethen
问题背景
在MMDetection3D项目中,用户在使用get_flops.py工具计算PointPillars模型的浮点运算量(FLOPs)时遇到了错误。该工具在分析PointPillars模型时抛出"_forward() takes 1 positional argument but 3 were given"的错误,表明函数参数传递存在问题。
错误原因分析
通过深入分析,我们发现问题的根源在于MMDetection3D框架中get_flops.py工具与PointPillars模型前向传播函数的不兼容性。具体表现为:
- get_flops.py工具在计算FLOPs时会调用模型的_forward()方法
- 但PointPillars模型(特别是MVXFasterRCNN检测器)的_forward()方法实现不完整
- 参数传递方式与工具预期不符,导致参数数量不匹配的错误
解决方案
针对Nuscenes数据集上的PointPillars模型(MVXFasterRCNN检测器),我们提供了以下解决方案:
1. 修改MVXTwoStage检测器代码
需要在mmdet3d/models/detectors/mvx_two_stage.py文件中进行以下修改:
首先添加必要的导入:
from torch.nn import functional as F
from mmcv.ops import Voxelization
然后在__init__()方法中初始化体素化层:
self.voxel_layer = Voxelization(
voxel_size=[0.2, 0.2, 8],
point_cloud_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
max_num_points=20
)
2. 实现_forward()方法
添加完整的_forward()方法实现:
def _forward(self,
batch_inputs_dict: dict,
points: Optional[List[Tensor]] = None,
img_feats: Optional[Sequence[Tensor]] = None,
batch_input_metas: Optional[List[dict]] = None
) -> Sequence[Tensor]:
voxels, num_points, coors = self.voxelize(batch_inputs_dict)
voxel_features = self.pts_voxel_encoder(voxels,
num_points,
coors,
img_feats,
batch_input_metas)
batch_size = coors[-1, 0] + 1
x = self.pts_middle_encoder(voxel_features, coors,
batch_size)
x = self.pts_backbone(x)
if self.with_pts_neck:
x = self.pts_neck(x)
return x
3. 实现voxelize()方法
添加体素化辅助方法:
@torch.no_grad()
def voxelize(self, points):
"""应用硬体素化到点云数据"""
voxels, coors, num_points = [], [], []
for res in points:
res_voxels, res_coors, res_num_points = self.voxel_layer(res)
voxels.append(res_voxels)
coors.append(res_coors)
num_points.append(res_num_points)
voxels = torch.cat(voxels, dim=0)
num_points = torch.cat(num_points, dim=0)
coors_batch = []
for i, coor in enumerate(coors):
coor_pad = F.pad(coor, (1, 0), mode='constant', value=i)
coors_batch.append(coor_pad)
coors_batch = torch.cat(coors_batch, dim=0)
return voxels, num_points, coors_batch
注意事项
- 上述解决方案专门针对Nuscenes数据集上的PointPillars模型(MVXFasterRCNN检测器)
- 对于KITTI数据集上的PointPillars模型,需要修改voxelnet.py文件中的相应实现
- 体素化参数(voxel_size, point_cloud_range等)应根据实际数据集配置进行调整
技术原理
PointPillars是一种基于点云的3D目标检测方法,其核心思想是将点云数据转换为柱状体素(pillars)表示,然后使用2D卷积网络进行处理。计算其FLOPs需要完整模拟前向传播过程,包括:
- 点云体素化处理
- 特征编码
- 中间特征处理
- 主干网络计算
- 颈部网络处理
通过上述修改,我们确保了FLOPs计算工具能够正确捕获模型的所有计算操作,从而得到准确的浮点运算量评估。
总结
本文详细分析了MMDetection3D中PointPillars模型FLOPs计算问题的原因,并提供了完整的解决方案。理解这一问题的解决过程不仅有助于正确计算模型复杂度,也为深入理解PointPillars模型的计算流程提供了参考。开发者可以根据实际需求调整体素化参数,以适应不同的数据集和任务需求。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 开源电子设计自动化利器:KiCad EDA全方位使用指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
296
2.64 K
Ascend Extension for PyTorch
Python
128
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
607
190
React Native鸿蒙化仓库
JavaScript
228
307
暂无简介
Dart
589
127
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
611
仓颉编译器源码及 cjdb 调试工具。
C++
122
482
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
178
62
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
454