MMDetection3D中PointPillars模型FLOPs计算问题解析
2025-06-06 23:13:24作者:昌雅子Ethen
问题背景
在MMDetection3D项目中,用户在使用get_flops.py工具计算PointPillars模型的浮点运算量(FLOPs)时遇到了错误。该工具在分析PointPillars模型时抛出"_forward() takes 1 positional argument but 3 were given"的错误,表明函数参数传递存在问题。
错误原因分析
通过深入分析,我们发现问题的根源在于MMDetection3D框架中get_flops.py工具与PointPillars模型前向传播函数的不兼容性。具体表现为:
- get_flops.py工具在计算FLOPs时会调用模型的_forward()方法
- 但PointPillars模型(特别是MVXFasterRCNN检测器)的_forward()方法实现不完整
- 参数传递方式与工具预期不符,导致参数数量不匹配的错误
解决方案
针对Nuscenes数据集上的PointPillars模型(MVXFasterRCNN检测器),我们提供了以下解决方案:
1. 修改MVXTwoStage检测器代码
需要在mmdet3d/models/detectors/mvx_two_stage.py文件中进行以下修改:
首先添加必要的导入:
from torch.nn import functional as F
from mmcv.ops import Voxelization
然后在__init__()方法中初始化体素化层:
self.voxel_layer = Voxelization(
voxel_size=[0.2, 0.2, 8],
point_cloud_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
max_num_points=20
)
2. 实现_forward()方法
添加完整的_forward()方法实现:
def _forward(self,
batch_inputs_dict: dict,
points: Optional[List[Tensor]] = None,
img_feats: Optional[Sequence[Tensor]] = None,
batch_input_metas: Optional[List[dict]] = None
) -> Sequence[Tensor]:
voxels, num_points, coors = self.voxelize(batch_inputs_dict)
voxel_features = self.pts_voxel_encoder(voxels,
num_points,
coors,
img_feats,
batch_input_metas)
batch_size = coors[-1, 0] + 1
x = self.pts_middle_encoder(voxel_features, coors,
batch_size)
x = self.pts_backbone(x)
if self.with_pts_neck:
x = self.pts_neck(x)
return x
3. 实现voxelize()方法
添加体素化辅助方法:
@torch.no_grad()
def voxelize(self, points):
"""应用硬体素化到点云数据"""
voxels, coors, num_points = [], [], []
for res in points:
res_voxels, res_coors, res_num_points = self.voxel_layer(res)
voxels.append(res_voxels)
coors.append(res_coors)
num_points.append(res_num_points)
voxels = torch.cat(voxels, dim=0)
num_points = torch.cat(num_points, dim=0)
coors_batch = []
for i, coor in enumerate(coors):
coor_pad = F.pad(coor, (1, 0), mode='constant', value=i)
coors_batch.append(coor_pad)
coors_batch = torch.cat(coors_batch, dim=0)
return voxels, num_points, coors_batch
注意事项
- 上述解决方案专门针对Nuscenes数据集上的PointPillars模型(MVXFasterRCNN检测器)
- 对于KITTI数据集上的PointPillars模型,需要修改voxelnet.py文件中的相应实现
- 体素化参数(voxel_size, point_cloud_range等)应根据实际数据集配置进行调整
技术原理
PointPillars是一种基于点云的3D目标检测方法,其核心思想是将点云数据转换为柱状体素(pillars)表示,然后使用2D卷积网络进行处理。计算其FLOPs需要完整模拟前向传播过程,包括:
- 点云体素化处理
- 特征编码
- 中间特征处理
- 主干网络计算
- 颈部网络处理
通过上述修改,我们确保了FLOPs计算工具能够正确捕获模型的所有计算操作,从而得到准确的浮点运算量评估。
总结
本文详细分析了MMDetection3D中PointPillars模型FLOPs计算问题的原因,并提供了完整的解决方案。理解这一问题的解决过程不仅有助于正确计算模型复杂度,也为深入理解PointPillars模型的计算流程提供了参考。开发者可以根据实际需求调整体素化参数,以适应不同的数据集和任务需求。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
最新内容推荐
【免费下载】 JDK 8 和 JDK 17 无缝切换及 IDEA 和 【maven下载安装与配置】 DirectX修复工具【亲测免费】 让经典焕发新生:使用 Visual Studio Code 作为 Visual C++ 6.0 编辑器【亲测免费】 抖音直播助手:douyin-live-go 项目推荐【亲测免费】 ActivityManager 使用指南【亲测免费】 使用Docker-Compose部署达梦DEM管理工具(适用于Mac M1系列)【免费下载】 Windows Keepalived:Windows系统上的高可用性解决方案 Matlab物理建模仿真利器——Simscape及其编程语言Simscape Language学习资源推荐【亲测免费】 Windows10安装Hadoop 3.1.3详细教程【亲测免费】 开源项目 gkd-kit/gkd 常见问题解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
491
3.62 K
Ascend Extension for PyTorch
Python
300
332
暂无简介
Dart
740
178
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
288
123
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
866
473
仓颉编译器源码及 cjdb 调试工具。
C++
150
881
React Native鸿蒙化仓库
JavaScript
297
345
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
Dora SSR 是一款跨平台的游戏引擎,提供前沿或是具有探索性的游戏开发功能。它内置了Web IDE,提供了可以轻轻松松通过浏览器访问的快捷游戏开发环境,特别适合于在新兴市场如国产游戏掌机和其它移动电子设备上直接进行游戏开发和编程学习。
C++
52
7