SnakeAI 项目教程
2024-08-24 20:57:27作者:戚魁泉Nursing
项目介绍
SnakeAI 是一个基于神经网络和遗传算法训练的 AI 代理,用于玩经典游戏“贪吃蛇”。该项目的目标是展示如何通过深度学习和遗传算法来优化游戏策略。SnakeAI 项目使用了 Pygame 库来实现游戏界面,并利用 PyTorch 进行神经网络的训练和推理。
项目快速启动
环境配置
首先,确保你已经安装了 Python 和 Conda。然后,按照以下步骤配置环境:
# 克隆项目仓库
git clone https://github.com/Chrispresso/SnakeAI.git
cd SnakeAI
# 创建并激活 Conda 环境
conda create -n snakeai python=3.8
conda activate snakeai
# 安装依赖
pip install -r requirements.txt
运行游戏
配置好环境后,你可以运行以下命令来启动游戏:
# 进入项目主目录
cd main
# 运行游戏
python snake_game.py
训练 AI
如果你想训练 AI 代理,可以运行以下命令:
# 运行训练脚本
python train.py
应用案例和最佳实践
自定义神经网络
SnakeAI 允许用户自定义神经网络的结构,包括输入层、隐藏层和输出层的神经元数量。你可以在 config.py 文件中修改这些参数。
遗传算法优化
SnakeAI 使用遗传算法来优化神经网络的权重。通过调整遗传算法的参数,如交叉率、变异率和种群大小,可以进一步提高 AI 的性能。
可视化训练过程
SnakeAI 支持使用 TensorBoard 来可视化训练过程。你可以通过以下命令启动 TensorBoard:
tensorboard --logdir=logs/
然后在浏览器中打开 http://localhost:6006/ 查看训练曲线。
典型生态项目
Pygame
Pygame 是一个用于开发 2D 游戏和多媒体应用程序的 Python 库。SnakeAI 使用 Pygame 来实现游戏界面和用户交互。
PyTorch
PyTorch 是一个开源的机器学习库,提供了强大的张量计算和深度神经网络功能。SnakeAI 使用 PyTorch 来构建和训练神经网络。
TensorBoard
TensorBoard 是一个用于可视化 TensorFlow 图表和其他指标的工具。SnakeAI 使用 TensorBoard 来监控和分析训练过程。
通过这些生态项目的结合,SnakeAI 提供了一个完整的解决方案,从游戏实现到 AI 训练和优化,展示了如何利用开源工具构建复杂的 AI 系统。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248