PyTorch入门教程:深入浅出PyTorch
2024-10-10 21:55:27作者:仰钰奇
1、项目介绍
项目初衷
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。考虑到PyTorch的学习兼具理论储备和动手训练,两手都要抓两手都要硬的特点,我们开发了《深入浅出PyTorch》课程,期望以组队学习的形式,帮助大家从入门到熟练掌握PyTorch工具,进而实现自己的深度学习算法。
内容简介
《深入浅出PyTorch》是一个系列,一共有三个部分,已经上线的是本系列的第一、二部分,后续会不断更新《深入浅出PyTorch》(下),给出更贴合实际应用的实战案例。内容包括:
- 第零章:前置知识(选学)
- 第一章:PyTorch的简介和安装
- 第二章:PyTorch基础知识
- 第三章:PyTorch的主要组成模块
- 第四章:PyTorch基础实战
- 第五章:PyTorch模型定义
- 第六章:PyTorch进阶训练技巧
- 第七章:PyTorch可视化
- 第八章:PyTorch生态简介
- 第九章:模型部署
- 第十章:常见网络代码的解读(推进中)
2、项目快速启动
安装PyTorch
首先,确保你已经安装了Python。然后,使用以下命令安装PyTorch:
pip install torch torchvision torchaudio
快速启动代码示例
以下是一个简单的PyTorch代码示例,用于创建一个简单的神经网络并进行训练:
import torch
import torch.nn as nn
import torch.optim as optim
# 定义一个简单的神经网络
class SimpleNet(nn.Module):
def __init__(self):
super(SimpleNet, self).__init__()
self.fc1 = nn.Linear(784, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# 初始化网络
net = SimpleNet()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)
# 模拟输入数据
inputs = torch.randn(32, 784)
labels = torch.randint(0, 10, (32,))
# 训练网络
for epoch in range(10):
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
print(f'Epoch {epoch+1}, Loss: {loss.item()}')
3、应用案例和最佳实践
应用案例
- Fashion-MNIST时装分类:通过PyTorch实现一个简单的图像分类任务,使用Fashion-MNIST数据集。
- 果蔬分类实战:使用PyTorch进行果蔬图像的分类,通过实际案例加深对PyTorch的理解。
最佳实践
- 模型微调:使用预训练模型进行微调,以适应特定任务。
- 半精度训练:在支持的硬件上使用半精度浮点数进行训练,以提高训练速度和节省内存。
4、典型生态项目
torchvision
torchvision是PyTorch的官方图像处理库,提供了常用的数据集、模型架构和图像转换工具。
PyTorchVideo
PyTorchVideo是一个专注于视频理解的开源库,提供了视频数据集、模型和工具。
torchtext
torchtext是PyTorch的文本处理库,提供了文本数据集、模型和工具。
torchaudio
torchaudio是PyTorch的音频处理库,提供了音频数据集、模型和工具。
通过这些生态项目,PyTorch能够覆盖从图像、视频、文本到音频的广泛应用场景,为深度学习研究者和开发者提供了强大的工具支持。
登录后查看全文
热门内容推荐
1 freeCodeCamp全栈开发课程中Navbar组件构建的优化建议2 freeCodeCamp全栈开发课程中收藏图标切换器的优化建议3 freeCodeCamp贷款资格检查器中的参数验证问题分析4 freeCodeCamp课程中"构建电子邮件掩码器"项目文档优化建议5 freeCodeCamp 前端练习:收藏图标切换器的事件委托问题解析6 freeCodeCamp课程中关于单选框样式定制的技术解析7 freeCodeCamp课程中CSS背景与边框测验的拼写错误修复8 freeCodeCamp Python密码生成器课程中的动词一致性修正9 freeCodeCamp挑战编辑器URL重定向问题解析10 freeCodeCamp购物清单项目中的全局变量使用问题分析
最新内容推荐
Spark NLP中Token分类模型处理异常问题分析 Apollo iOS 中自定义拦截器的实现与问题解析 Pex工具在Fedora Silverblue/Kinoite系统上的符号链接问题解析 PSReadLine光标位置异常问题分析与解决方案 PSReadLine项目中的控制台光标位置异常问题分析 Unity Catalog AI 0.3.1版本发布:全面提升函数计算可靠性 Jetty项目中的跨上下文异步调度机制解析 PSReadLine项目中的剪贴板粘贴异常问题解析 Television项目0.10.10版本发布:命令行工具优化与功能增强 Python-slack-sdk中消息元数据EventPayload丢失问题解析
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
438
335

React Native鸿蒙化仓库
C++
97
172

openGauss kernel ~ openGauss is an open source relational database management system
C++
51
118

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
14

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
273
452

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
635
75

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
88
244

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
345
34

微信小程序商城,微信小程序微店
JavaScript
30
3

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
560
39