Apache Fury Scala 对象反序列化问题解析
问题背景
在使用 Apache Fury 进行 Scala 对象序列化/反序列化时,开发人员发现了一个特殊现象:当尝试反序列化一个 Scala 的 case object 或单例对象时,首次反序列化会返回 null 值,而只有在执行过一次序列化操作后,后续的反序列化才能正常工作。
问题复现
这个问题在以下两种场景中表现明显:
-
简单 case class 场景:定义一个简单的 case class 并尝试反序列化其序列化后的字节数组,首次反序列化返回 null,执行一次序列化操作后,再次反序列化才能得到正确结果。
-
Scala 枚举模式场景:使用 sealed trait 和 case object 实现的枚举模式,当修改枚举值后重新运行程序,反序列化会返回 null 而不是预期的枚举值。
技术分析
经过深入分析,发现问题的根源在于 Scala 对单例对象(object)的懒加载机制。Scala 中的单例对象是延迟初始化的,只有在首次被访问时才会真正创建实例。这种设计导致了以下行为:
-
当 Fury 的
SingletonObjectSerializer尝试读取单例对象时,如果该对象尚未被初始化,其MODULE$字段可能为 null 或者根本不存在。 -
只有在程序显式引用了该单例对象(如执行序列化操作时),Scala 运行时才会初始化该对象,设置
MODULE$字段。 -
这就是为什么首次反序列化失败,而执行序列化后反序列化却能成功的原因——序列化操作隐式触发了单例对象的初始化。
解决方案
针对这个问题,社区提出了一个优雅的解决方案:在 SingletonObjectSerializer 的构造函数中,主动检查并确保目标类已完成初始化。具体实现是通过 Java 的 Unsafe API 来强制初始化目标类:
public SingletonObjectSerializer(Fury fury, Class type) {
super(fury, type);
if (Platform.UNSAFE.shouldBeInitialized(type)) {
Platform.UNSAFE.ensureClassInitialized(type);
}
try {
field = type.getDeclaredField("MODULE$");
} catch (NoSuchFieldException e) {
throw new RuntimeException(type + " doesn't have `MODULE$` field", e);
}
}
这个修改确保了在访问 MODULE$ 字段之前,目标类已经完全初始化,从而解决了首次反序列化返回 null 的问题。
技术启示
这个问题给我们几个重要的技术启示:
-
理解语言特性:在使用序列化框架时,必须深入理解目标语言的特性,如 Scala 的单例对象懒加载机制。
-
框架适配:通用序列化框架需要针对不同语言的特性进行特殊处理,不能假设所有语言的对象初始化行为都一致。
-
防御性编程:在访问可能延迟初始化的资源时,应该采用防御性编程策略,确保资源可用后再进行操作。
这个问题的解决不仅修复了 Apache Fury 在 Scala 环境下的一个关键问题,也为处理类似的语言特性与序列化框架的交互提供了有价值的参考。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00