Apache Kyuubi 中 DBeaver 访问 Hive 表时 NameNode 高可用问题分析
问题背景
在使用 Apache Kyuubi 作为 SQL 网关时,当通过 DBeaver 客户端工具访问 Hive 表时,如果 HDFS NameNode 处于高可用(HA)配置下且当前访问的 NameNode 处于 standby 状态,会出现"Operation category READ is not supported in state standby"的错误。这个问题特别出现在 Kerberos 和 LDAP 双重认证环境下。
问题本质
该问题的根本原因在于 Hive 元数据存储(HMS)中某些系统数据库(如 sys 和 information_schema)的存储路径仍然指向具体的 NameNode 地址(如 hdfs://ali-odp-test-01.huan.tv:8020),而不是使用配置好的 nameservice(如 hdfs://ha-nn)。当这些 NameNode 处于 standby 状态时,Hive 无法自动切换到 active 节点,导致读取操作失败。
技术原理
在 HDFS 高可用环境中,客户端应该通过配置的 nameservice 访问 HDFS,而不是直接连接特定的 NameNode。nameservice 会自动处理主备切换。但在以下情况下会出现问题:
- Hive 的系统数据库在启用 HA 前已经创建,其存储路径硬编码了具体的 NameNode 地址
- 这些路径信息被持久化在 Hive 元数据存储中
- 当这些 NameNode 变为 standby 时,Hive 仍然尝试从这些节点读取数据
解决方案
方案一:修改系统数据库路径
对于 Hive 的系统数据库(sys 和 information_schema),需要手动修改其存储路径,从具体的 NameNode 地址改为使用 nameservice:
-
原路径:
hdfs://ali-odp-test-01.huan.tv:8020/warehouse/tablespace/managed/hive/sys.db hdfs://ali-odp-test-01.huan.tv:8020/warehouse/tablespace/managed/hive/information_schema.db -
修改为:
hdfs://ha-nn/warehouse/tablespace/managed/hive/sys.db hdfs://ha-nn/warehouse/tablespace/managed/hive/information_schema.db
方案二:使用特定版本的 Spark
某些商业发行版(如 Cloudera)的 Spark 包含了补丁(SPARK-22121),可以自动将 NameNode 地址转换为 nameservice。但社区版 Spark 没有包含这个功能。
最佳实践
- 在启用 HDFS HA 前,规划好 Hive 元数据的存储路径
- 确保所有数据库和表都使用 nameservice 而非具体 NameNode 地址
- 对于已存在的系统数据库,及时更新其存储路径
- 在生产环境考虑使用经过企业增强的 Spark 发行版
总结
这个问题展示了在大数据生态系统中,当底层存储系统(HDFS)配置变更时,上层组件(Hive)可能需要进行相应调整。理解各组件间的依赖关系和配置影响范围,对于构建稳定的大数据平台至关重要。通过合理规划存储路径和使用高可用机制,可以避免此类问题发生。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00