Velocity Spring Boot 启动器教程
项目介绍
Velocity Spring Boot Project 是一个专为 Spring Boot 设计的 Starter,旨在简化 Apache Velocity 模板引擎的集成过程。该项目不仅包含了 Spring 官方对 Velocity 的支持,还融入了阿里巴巴贡献的特定实现,例如布局工具等额外特性。通过这个 Starter,开发者能够更便捷地在 Spring Boot 应用中使用 Velocity 进行视图渲染。
项目快速启动
要快速启动一个使用 velocity-spring-boot-project 的项目,首先确保你的环境中已安装了 Maven 和 Java。然后,按照以下步骤操作:
-
在您的
pom.xml文件中添加必要的依赖项。<!-- 引入Spring Boot Web Starter --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <!-- 添加Velocity Spring Boot Starter --> <dependency> <groupId>com.alibaba.boot</groupId> <artifactId>velocity-spring-boot-starter</artifactId> <version>1.0.4.RELEASE</version> <!-- 请检查最新版本 --> </dependency>若依赖无法自动解析,可尝试添加Sonatype Nexus仓库:
<repositories> <repository> <id>sonatype-nexus</id> <url>https://oss.sonatype.org/content/repositories/releases</url> <releases><enabled>true</enabled></releases> </repository> </repositories> -
修改配置以适应常见的需求,比如将 Velocity 的默认
.vm后缀改为.html,并设置正确的编码:spring.velocity.suffix=.html spring.velocity.properties.input.encoding=UTF-8 spring.velocity.properties.output.encoding=UTF-8 -
创建简单的 Velocity 视图模板。例如,在资源目录下的
templates文件夹里创建一个index.html.vm。 -
编写一个简单的控制器来返回视图:
import org.springframework.stereotype.Controller; import org.springframework.web.bind.annotation.GetMapping; @Controller public class HelloController { @GetMapping("/") public String index() { return "index"; } } -
运行您的 Spring Boot 应用,访问
http://localhost:8080即可看到由 Velocity 渲染的结果。
应用案例和最佳实践
- 模块化: 利用 Velocity 的宏库功能,创建可复用的模板片段,提高开发效率和维护性。
- 国际化: 结合 Spring Boot 的国际化的特性,实现多语言的模板支持。
- 性能优化: 确保 Velocity 配置适当,如开启缓存以减少渲染时间。
- 安全考量: 使用 Velocity 安全策略避免模板注入攻击,保障应用安全。
典型生态项目
虽然直接指明典型的生态项目的信息未提供,但一般情况下,Spring Boot 应用结合 Velocity 可广泛应用于需要动态内容生成的场景,比如博客系统、企业级后台管理系统或是任何需要服务器端渲染的Web应用。阿里巴巴的此Starter加强了Spring Boot与Velocity的整合能力,使得在微服务或云原生环境下,这些应用可以更加灵活高效地运行。
记得,随着Spring Boot版本的更新和项目的发展,依赖的版本号可能发生变化,建议查阅最新的文档或项目主页确认依赖详情。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00