Velocity Spring Boot 启动器教程
项目介绍
Velocity Spring Boot Project 是一个专为 Spring Boot 设计的 Starter,旨在简化 Apache Velocity 模板引擎的集成过程。该项目不仅包含了 Spring 官方对 Velocity 的支持,还融入了阿里巴巴贡献的特定实现,例如布局工具等额外特性。通过这个 Starter,开发者能够更便捷地在 Spring Boot 应用中使用 Velocity 进行视图渲染。
项目快速启动
要快速启动一个使用 velocity-spring-boot-project 的项目,首先确保你的环境中已安装了 Maven 和 Java。然后,按照以下步骤操作:
-
在您的
pom.xml文件中添加必要的依赖项。<!-- 引入Spring Boot Web Starter --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <!-- 添加Velocity Spring Boot Starter --> <dependency> <groupId>com.alibaba.boot</groupId> <artifactId>velocity-spring-boot-starter</artifactId> <version>1.0.4.RELEASE</version> <!-- 请检查最新版本 --> </dependency>若依赖无法自动解析,可尝试添加Sonatype Nexus仓库:
<repositories> <repository> <id>sonatype-nexus</id> <url>https://oss.sonatype.org/content/repositories/releases</url> <releases><enabled>true</enabled></releases> </repository> </repositories> -
修改配置以适应常见的需求,比如将 Velocity 的默认
.vm后缀改为.html,并设置正确的编码:spring.velocity.suffix=.html spring.velocity.properties.input.encoding=UTF-8 spring.velocity.properties.output.encoding=UTF-8 -
创建简单的 Velocity 视图模板。例如,在资源目录下的
templates文件夹里创建一个index.html.vm。 -
编写一个简单的控制器来返回视图:
import org.springframework.stereotype.Controller; import org.springframework.web.bind.annotation.GetMapping; @Controller public class HelloController { @GetMapping("/") public String index() { return "index"; } } -
运行您的 Spring Boot 应用,访问
http://localhost:8080即可看到由 Velocity 渲染的结果。
应用案例和最佳实践
- 模块化: 利用 Velocity 的宏库功能,创建可复用的模板片段,提高开发效率和维护性。
- 国际化: 结合 Spring Boot 的国际化的特性,实现多语言的模板支持。
- 性能优化: 确保 Velocity 配置适当,如开启缓存以减少渲染时间。
- 安全考量: 使用 Velocity 安全策略避免模板注入攻击,保障应用安全。
典型生态项目
虽然直接指明典型的生态项目的信息未提供,但一般情况下,Spring Boot 应用结合 Velocity 可广泛应用于需要动态内容生成的场景,比如博客系统、企业级后台管理系统或是任何需要服务器端渲染的Web应用。阿里巴巴的此Starter加强了Spring Boot与Velocity的整合能力,使得在微服务或云原生环境下,这些应用可以更加灵活高效地运行。
记得,随着Spring Boot版本的更新和项目的发展,依赖的版本号可能发生变化,建议查阅最新的文档或项目主页确认依赖详情。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00