Velocity Spring Boot 启动器教程
项目介绍
Velocity Spring Boot Project 是一个专为 Spring Boot 设计的 Starter,旨在简化 Apache Velocity 模板引擎的集成过程。该项目不仅包含了 Spring 官方对 Velocity 的支持,还融入了阿里巴巴贡献的特定实现,例如布局工具等额外特性。通过这个 Starter,开发者能够更便捷地在 Spring Boot 应用中使用 Velocity 进行视图渲染。
项目快速启动
要快速启动一个使用 velocity-spring-boot-project
的项目,首先确保你的环境中已安装了 Maven 和 Java。然后,按照以下步骤操作:
-
在您的
pom.xml
文件中添加必要的依赖项。<!-- 引入Spring Boot Web Starter --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <!-- 添加Velocity Spring Boot Starter --> <dependency> <groupId>com.alibaba.boot</groupId> <artifactId>velocity-spring-boot-starter</artifactId> <version>1.0.4.RELEASE</version> <!-- 请检查最新版本 --> </dependency>
若依赖无法自动解析,可尝试添加Sonatype Nexus仓库:
<repositories> <repository> <id>sonatype-nexus</id> <url>https://oss.sonatype.org/content/repositories/releases</url> <releases><enabled>true</enabled></releases> </repository> </repositories>
-
修改配置以适应常见的需求,比如将 Velocity 的默认
.vm
后缀改为.html
,并设置正确的编码:spring.velocity.suffix=.html spring.velocity.properties.input.encoding=UTF-8 spring.velocity.properties.output.encoding=UTF-8
-
创建简单的 Velocity 视图模板。例如,在资源目录下的
templates
文件夹里创建一个index.html.vm
。 -
编写一个简单的控制器来返回视图:
import org.springframework.stereotype.Controller; import org.springframework.web.bind.annotation.GetMapping; @Controller public class HelloController { @GetMapping("/") public String index() { return "index"; } }
-
运行您的 Spring Boot 应用,访问
http://localhost:8080
即可看到由 Velocity 渲染的结果。
应用案例和最佳实践
- 模块化: 利用 Velocity 的宏库功能,创建可复用的模板片段,提高开发效率和维护性。
- 国际化: 结合 Spring Boot 的国际化的特性,实现多语言的模板支持。
- 性能优化: 确保 Velocity 配置适当,如开启缓存以减少渲染时间。
- 安全考量: 使用 Velocity 安全策略避免模板注入攻击,保障应用安全。
典型生态项目
虽然直接指明典型的生态项目的信息未提供,但一般情况下,Spring Boot 应用结合 Velocity 可广泛应用于需要动态内容生成的场景,比如博客系统、企业级后台管理系统或是任何需要服务器端渲染的Web应用。阿里巴巴的此Starter加强了Spring Boot与Velocity的整合能力,使得在微服务或云原生环境下,这些应用可以更加灵活高效地运行。
记得,随着Spring Boot版本的更新和项目的发展,依赖的版本号可能发生变化,建议查阅最新的文档或项目主页确认依赖详情。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0294- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









