OpenLLMetry项目中Anthropic模型思考令牌的追踪实现
2025-06-06 10:27:32作者:董灵辛Dennis
在大型语言模型(LLM)应用开发中,调试复杂提示(Prompt)一直是个挑战。OpenLLMetry项目近期针对Anthropic模型实现了思考令牌(thinking tokens)的追踪功能,为开发者提供了更深入的模型内部运作洞察。
思考令牌的价值
Anthropic的某些模型(如claude-sonnet-3-7-thinking)会在响应中包含"思考过程"的特殊字段。这些思考令牌记录了模型处理请求时的内部推理逻辑,例如:
- 如何理解用户请求
- 采取何种推理路径
- 决策背后的原因
对于复杂任务和大规模提示工程,这些信息至关重要。它们能帮助开发者:
- 识别提示中的模糊或歧义之处
- 优化提示结构以提高模型表现
- 理解模型错误背后的原因
- 验证模型是否遵循了预期推理路径
技术实现方案
OpenLLMetry通过扩展其Anthropic instrumentation模块来捕获这些思考令牌。技术实现上采用了以下设计:
-
数据结构设计:将思考内容作为独立的角色(role)处理
- 设置
gen_ai.completions.0.role = "thinking" - 存储实际思考内容到
gen_ai.completions.0.content
- 设置
-
与现有架构集成:保持与OpenLLMetry现有监控体系的兼容性
- 不破坏现有监控数据格式
- 新增字段不影响已有功能
-
可扩展性考虑:为未来可能出现的其他模型内部信息预留接口
行业对比
不同于Anthropic,当前OpenAI的模型设计上不直接暴露思考过程。但值得注意的是,随着OpenAI新响应API的推出,类似功能可能会成为行业标准。OpenLLMetry的这一实现为此类功能提供了参考设计。
开发者价值
这一功能的加入使得:
- 调试时间大幅缩短:开发者可以直接看到模型"思考"而不仅是输出
- 提示工程更科学:基于实际模型推理而非猜测来优化提示
- 性能分析更深入:理解模型响应时间是否花费在预期推理步骤上
未来展望
随着模型透明度的提高,类似思考令牌的功能可能会成为LLM服务的标配。OpenLLMetry的这一实现为行业树立了良好的实践标准,也为未来集成更多模型的内部信息打下了基础。团队也在考虑扩展对OpenAI新响应API的支持,保持在该领域的领先地位。
这一功能的加入标志着LLM可观察性工具从单纯的结果监控向过程监控的演进,为构建更可靠、更易调试的LLM应用提供了坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
520
3.7 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1