在AWS EKS Blueprints中使用Karpenter部署跨账户CMK加密的节点组
背景介绍
在使用AWS EKS Blueprints项目部署Kubernetes集群时,Karpenter作为自动扩缩容组件能够高效地管理节点组。但在实际生产环境中,我们经常遇到需要使用跨账户的CMK(客户管理密钥)来加密节点组EBS卷的需求。本文将详细介绍如何解决Karpenter在跨账户CMK场景下的节点部署问题。
问题现象
当尝试使用Karpenter部署节点组时,如果节点AMI的EBS卷使用了另一个AWS账户中的CMK进行加密,节点会立即被终止,并出现"[Client.InvalidKMSKey.InvalidState]"错误。这表明Karpenter或节点角色没有足够的权限访问外部账户的CMK。
解决方案
IAM权限配置
首先需要确保Karpenter控制器和节点角色具有正确的KMS权限。以下是关键权限配置:
-
Karpenter控制器角色需要添加以下KMS权限:
- kms:Encrypt
- kms:Decrypt
- kms:ReEncrypt*
- kms:GenerateDataKey*
- kms:DescribeKey
- kms:CreateGrant
-
节点角色也需要类似的KMS权限,特别是当节点需要访问加密的EBS卷时。
创建KMS Grant
仅配置IAM权限是不够的,还需要在CMK所在的账户中创建Grant(授权)。这是跨账户使用CMK的关键步骤:
aws kms create-grant \
--region us-west-2 \
--key-id arn:aws:kms:us-west-2:444455556666:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d \
--grantee-principal arn:aws:iam::111122223333:role/aws-service-role/autoscaling.amazonaws.com/AWSServiceRoleForAutoScaling \
--operations "Encrypt" "Decrypt" "ReEncryptFrom" "ReEncryptTo" "GenerateDataKey" "GenerateDataKeyWithoutPlaintext" "DescribeKey" "CreateGrant"
权限策略示例
以下是一个完整的IAM策略示例,包含了Karpenter控制器所需的所有权限:
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "AllowCreationOfGrantForTheKMSKeyinExternalAccount444455556666",
"Effect": "Allow",
"Action": "kms:CreateGrant",
"Resource": "arn:aws:kms:us-west-2:444455556666:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d"
}
]
}
实施注意事项
-
权限边界:确保Grant只授予必要的操作权限,遵循最小权限原则。
-
审计跟踪:在CloudTrail中监控KMS Grant的创建和使用情况,确保安全合规。
-
自动化部署:建议将KMS Grant创建过程自动化,作为基础设施部署的一部分。
-
多区域考虑:如果您的部署跨多个AWS区域,需要为每个区域的CMK单独创建Grant。
-
角色传递:确保节点角色能够正确传递到EC2实例,这是KMS解密操作能够成功的关键。
常见问题排查
-
节点立即终止:检查CloudTrail日志,确认是否有权限拒绝的错误。
-
Grant不生效:确认Grant创建时指定的角色ARN是否正确,特别是跨账户场景。
-
权限不足:即使有Grant,节点角色仍需要基本的KMS权限才能发起解密请求。
最佳实践
-
集中管理CMK:在企业环境中,建议使用专门的账户管理CMK,其他业务账户通过跨账户访问使用。
-
定期轮换:按照安全要求定期轮换CMK,并更新相关Grant。
-
标签管理:为KMS资源和Grant添加适当的标签,便于管理和成本分配。
-
备份策略:确保加密的EBS卷有适当的备份策略,特别是跨账户场景。
通过以上配置和最佳实践,您可以在AWS EKS Blueprints项目中成功使用Karpenter部署跨账户CMK加密的节点组,既满足了安全合规要求,又保持了基础设施的弹性和自动化能力。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00