Manticore Search中HTTP JSON聚合查询性能优化解析
Manticore Search作为一款高性能的全文搜索引擎,近期在开发过程中发现了一个关于HTTP JSON接口聚合查询的性能问题。本文将深入分析该问题的技术背景、原因以及最终的解决方案。
问题背景
在Manticore Search 6.2.0至6.3.9版本中,开发团队发现通过HTTP JSON接口执行分组聚合查询时,相比直接使用SQL查询存在明显的性能差异。特别是在处理字符串类型的分组字段时,性能下降更为显著。
测试用例显示,在包含100万条记录的表上执行相同的分组操作:
- SQL查询耗时约82毫秒
- HTTP JSON聚合查询耗时约124毫秒
技术分析
经过深入分析,发现性能差异主要源于两种查询方式在底层实现上的不同:
-
SQL查询路径:当执行类似
select s, count(*) from strings group by s的查询时,系统会直接使用单一分组器(single grouper)来处理整个查询。 -
HTTP JSON聚合路径:对应的JSON查询会被转换为使用FACET机制的实现,这会创建多个排序器和额外的处理流程,特别是在处理字符串分组字段时会产生额外的开销。
解决方案
开发团队针对这一问题进行了优化,主要改进点包括:
-
智能查询转换:当检测到HTTP JSON请求中只包含一个聚合桶(aggs)且主查询limit=0时,系统会自动将其转换为使用单一分组器的查询路径,而非默认的FACET机制。
-
统一处理逻辑:确保JSON聚合查询与SQL FACET查询使用相同的底层优化设置,消除性能差异。
优化效果
经过优化后,HTTP JSON聚合查询的性能已与SQL分组查询基本持平。在实际测试中,两种查询方式的响应时间差异已缩小到可忽略的范围。
技术建议
对于Manticore Search用户,特别是需要高性能聚合查询的场景,建议:
- 对于简单的分组统计查询,优先考虑使用SQL接口
- 确保使用最新版本的Manticore Search以获得最佳性能
- 在设计数据模型时,对于高频分组字段,考虑使用数值类型而非字符串类型
这一优化不仅提升了特定场景下的查询性能,也体现了Manticore Search团队对性能优化的持续关注,为用户提供了更加一致和高效的查询体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00