首页
/ Progressive Differentiable Architecture Search (P-DARTS) 开源项目教程

Progressive Differentiable Architecture Search (P-DARTS) 开源项目教程

2025-05-22 22:07:14作者:田桥桑Industrious

1. 项目介绍

P-DARTS 是一种渐进式可微分架构搜索方法,它基于 DARTS 算法进行改进,能够在 CIFAR10 和 CIFAR100 数据集上进行搜索,并在 ImageNet 数据集上实现较高的分类精度。P-DARTS 通过其渐进式搜索策略,能够探索更深的网络架构,稳定性更好,易于推广到更复杂的视觉任务。

2. 项目快速启动

在开始之前,确保你的环境已经安装了 PyTorch 0.4 或更高版本,并且你的 GPU 至少有 16GB 内存。

以下是 P-DARTS 的搜索和评估过程的启动代码:

搜索阶段

python train_search.py \
--tmp_data_dir /path/to/your/data \
--save log_path \
--add_layers 6 \
--add_layers 12 \
--dropout_rate 0.1 \
--dropout_rate 0.4 \
--dropout_rate 0.7 \
--note note_of_this_run

如果要在 CIFAR100 上进行搜索,请添加 --cifar100 参数。

评估阶段

在 CIFAR10/100 上的评估:

python train_cifar.py \
--tmp_data_dir /path/to/your/data \
--auxiliary \
--cutout \
--save log_path \
--note note_of_this_run

如果要评估 CIFAR100,请添加 --cifar100 参数。

在 ImageNet (移动设置) 上的评估:

python train_imagenet.py \
--tmp_data_dir /path/to/your/data \
--save log_path \
--auxiliary \
--note note_of_this_run

测试预训练模型

使用预训练模型在 CIFAR10 和 ImageNet 上进行测试:

python test.py \
--auxiliary \
--model_path /path/to/your/model \
--data /path/to/your/data

对于 ImageNet,将 test.py 替换为 test_imagenet.py

3. 应用案例和最佳实践

P-DARTS 的应用案例主要包括在图像分类任务中搜索高效的网络架构。最佳实践建议在搜索阶段使用足够的数据和较高的批次大小,以获得稳定的搜索结果。评估阶段应使用与搜索阶段相同的超参数设置,以确保模型性能的可靠性。

4. 典型生态项目

P-DARTS 是基于 DARTS 的改进,因此在 DARTS 生态系统中,可以找到许多相关的项目和扩展,例如 PC-DARTS 等。这些项目提供了不同的搜索策略和优化方法,以适应不同的应用场景和性能需求。

以上就是 P-DARTS 开源项目的最佳实践教程。希望对您的项目开发有所帮助。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8