Progressive Differentiable Architecture Search (P-DARTS) 开源项目教程
2025-05-22 18:43:28作者:田桥桑Industrious
1. 项目介绍
P-DARTS 是一种渐进式可微分架构搜索方法,它基于 DARTS 算法进行改进,能够在 CIFAR10 和 CIFAR100 数据集上进行搜索,并在 ImageNet 数据集上实现较高的分类精度。P-DARTS 通过其渐进式搜索策略,能够探索更深的网络架构,稳定性更好,易于推广到更复杂的视觉任务。
2. 项目快速启动
在开始之前,确保你的环境已经安装了 PyTorch 0.4 或更高版本,并且你的 GPU 至少有 16GB 内存。
以下是 P-DARTS 的搜索和评估过程的启动代码:
搜索阶段
python train_search.py \
--tmp_data_dir /path/to/your/data \
--save log_path \
--add_layers 6 \
--add_layers 12 \
--dropout_rate 0.1 \
--dropout_rate 0.4 \
--dropout_rate 0.7 \
--note note_of_this_run
如果要在 CIFAR100 上进行搜索,请添加 --cifar100
参数。
评估阶段
在 CIFAR10/100 上的评估:
python train_cifar.py \
--tmp_data_dir /path/to/your/data \
--auxiliary \
--cutout \
--save log_path \
--note note_of_this_run
如果要评估 CIFAR100,请添加 --cifar100
参数。
在 ImageNet (移动设置) 上的评估:
python train_imagenet.py \
--tmp_data_dir /path/to/your/data \
--save log_path \
--auxiliary \
--note note_of_this_run
测试预训练模型
使用预训练模型在 CIFAR10 和 ImageNet 上进行测试:
python test.py \
--auxiliary \
--model_path /path/to/your/model \
--data /path/to/your/data
对于 ImageNet,将 test.py
替换为 test_imagenet.py
。
3. 应用案例和最佳实践
P-DARTS 的应用案例主要包括在图像分类任务中搜索高效的网络架构。最佳实践建议在搜索阶段使用足够的数据和较高的批次大小,以获得稳定的搜索结果。评估阶段应使用与搜索阶段相同的超参数设置,以确保模型性能的可靠性。
4. 典型生态项目
P-DARTS 是基于 DARTS 的改进,因此在 DARTS 生态系统中,可以找到许多相关的项目和扩展,例如 PC-DARTS 等。这些项目提供了不同的搜索策略和优化方法,以适应不同的应用场景和性能需求。
以上就是 P-DARTS 开源项目的最佳实践教程。希望对您的项目开发有所帮助。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133