LiveKit Agents项目中Cartesia TTS音频爆裂声问题分析与解决方案
2025-06-06 18:54:12作者:温玫谨Lighthearted
问题背景
在LiveKit Agents项目的实际应用中,开发人员报告了一个关于Cartesia TTS(文本转语音)服务的音频质量问题。具体表现为在使用Cartesia TTS时会出现随机的爆裂声(crackling sound),而其他TTS服务如ElevenLabs和OpenAI TTS则没有这个问题。
问题现象
爆裂声问题具有以下特征:
- 音频中出现不规则的爆裂噪声,幅度较大
- 问题并非每次语音输出都会出现,而是随机发生
- 在开发模式(development mode)下比生产模式(production mode)更频繁
- 在本地开发环境较少出现,但在Docker生产容器中较为常见
技术分析
经过深入调查,开发团队发现问题的根源在于音频重采样环节。具体技术细节如下:
- 采样率差异:Cartesia TTS默认输出24kHz采样率的音频,而OpenAI TTS输出48kHz采样率
- FallbackAdapter行为:当使用TTS FallbackAdapter时,适配器会自动将所有TTS输出重采样到最高采样率(48kHz)
- 重采样缺陷:在从24kHz重采样到48kHz的过程中,rtc.AudioResampler组件存在缺陷,导致产生了爆裂声
解决方案
针对这一问题,开发团队提供了两种解决方案:
临时解决方案
在FallbackAdapter中显式指定采样率为24kHz,强制所有TTS输出使用Cartesia的采样率:
tts=tts.FallbackAdapter(
tts=[
cartesia.TTS(model="sonic-2", voice="..."),
openai.TTS(model="gpt-4o-mini-tts", voice="ash"),
],
sample_rate=24000, # 显式设置采样率
)
永久解决方案
开发团队在底层修复了音频重采样器的缺陷,该修复已包含在livekit-agents 1.0.13版本中。用户只需升级SDK即可:
pip install --upgrade livekit-agents==1.0.13
最佳实践建议
- 对于多TTS服务混合使用的场景,建议统一采样率设置
- 生产环境中推荐使用最新版本的SDK
- 音频处理组件升级后应进行全面测试
- 对于关键业务场景,建议在开发阶段进行充分的音频质量测试
总结
音频处理是实时通信系统中的关键环节,采样率转换等基础操作需要特别关注。LiveKit团队快速响应并解决了这一问题,体现了项目对音频质量的重视。开发者在使用TTS服务时,应当注意不同服务间的技术参数差异,并遵循最佳实践以确保最佳用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134