深入理解Axios中Fetch适配器与流式请求的阻塞问题
背景介绍
在使用Axios进行HTTP请求时,开发者可能会遇到需要处理服务器推送事件(Server-Sent Events, SSE)的场景。Axios 1.7.2版本引入了基于Fetch API的适配器,支持流式响应处理,这为SSE等实时数据流场景提供了解决方案。
问题现象
开发者在实现SSE客户端时,使用了Axios的fetch适配器配合流式响应类型。具体实现方式是通过设置请求头Accept: text/event-stream
和responseType: 'stream'
来建立SSE连接。然而,当这个流式请求处于活动状态时,应用中的其他常规HTTP请求会被阻塞,表现为请求长时间处于pending状态。
技术分析
1. 流式请求的特性
使用fetch适配器处理流式响应时,底层实际上创建了一个持续的连接通道。与传统的HTTP请求不同,SSE连接会保持打开状态以接收服务器推送的数据。这种持久连接可能会影响浏览器对同一域名的并发请求处理。
2. 浏览器并发限制
现代浏览器对同一域名下的并发请求数量有限制(通常为6个)。当SSE连接保持活动状态时,它会占用一个连接"槽位",可能导致其他请求排队等待。
3. 服务器端问题
经过深入排查,发现问题的根本原因在于服务器端实现。服务器使用了一个Spring过滤器来包装响应以便记录日志,这种设计对于普通HTTP请求有效,但对于流式响应(如SSE)则会产生问题。特别是当服务器尝试在SSE响应中包含额外消息时,会导致连接处理异常。
解决方案
-
服务器端优化:移除对SSE响应的日志包装过滤器,确保流式响应能够正常传输而不被中间件干扰。
-
响应内容规范:对于SSE连接,服务器应仅发送符合EventSource协议的标准事件流,避免混入其他非标准内容。
-
连接管理:合理设计应用架构,考虑使用Web Workers处理SSE连接,避免阻塞主线程的HTTP请求。
最佳实践
-
在使用Axios处理SSE时,确保服务器端正确实现了EventSource协议。
-
对于需要同时处理SSE和常规HTTP请求的应用,可以考虑以下策略:
- 使用独立的子域名处理SSE连接
- 实现连接优先级管理
- 采用短轮询替代SSE(在实时性要求不高的场景)
-
在Node.js环境中,可以考虑使用专门的SSE客户端库,如
eventsource
库。
总结
Axios的fetch适配器为处理流式响应提供了便利,但在实际应用中需要注意浏览器并发限制和服务器端实现细节。通过合理的架构设计和服务器优化,可以避免流式请求阻塞其他HTTP请求的问题,构建稳定高效的实时应用。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









