AWS Deep Learning Containers发布PyTorch Graviton推理容器v1.16版本
2025-07-07 00:19:32作者:董灵辛Dennis
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,它集成了主流深度学习框架和工具链,让开发者能够快速部署和运行深度学习工作负载。这些容器经过AWS优化,可直接在Amazon EC2、Amazon ECS、Amazon EKS等服务上运行。
本次发布的v1.16版本主要针对基于Arm架构的Graviton处理器优化了PyTorch推理容器,特别适用于SageMaker服务环境。该版本基于Ubuntu 22.04操作系统,预装了Python 3.11环境,并集成了PyTorch 2.4.0框架的CPU版本。
核心特性与技术细节
该容器镜像的核心技术栈配置如下:
- 基础环境:Ubuntu 22.04操作系统,为容器提供了稳定可靠的Linux基础环境
- Python版本:Python 3.11,这是当前Python的主流稳定版本
- PyTorch版本:2.4.0+cpu,专为CPU环境优化,特别适配Graviton处理器架构
- 配套工具:同时集成了torchaudio 2.4.0和torchvision 0.19.0,为音频和视觉任务提供完整支持
预装软件包分析
容器中预装了丰富的Python包和系统工具,主要包括:
-
数据处理与科学计算:
- NumPy 1.26.4:基础数值计算库
- pandas 2.2.3:数据处理与分析工具
- scikit-learn 1.5.2:机器学习算法库
- scipy 1.14.1:科学计算工具包
-
深度学习相关:
- OpenCV 4.10.0.84:计算机视觉库
- Cython 3.0.11:Python C扩展工具
- ninja 1.11.1.1:构建系统工具
-
AWS工具链:
- boto3 1.35.47:AWS SDK for Python
- awscli 1.35.13:AWS命令行工具
-
系统工具:
- 预装了emacs编辑器及其相关组件
- 包含了GCC 10和11版本的开发库
适用场景与技术优势
这个容器镜像特别适合以下场景:
- SageMaker推理服务:专为SageMaker环境优化,可以无缝部署到SageMaker推理终端节点
- Graviton处理器优化:针对AWS Graviton处理器架构进行了专门优化,能够充分发挥Arm架构的性能优势
- 轻量级推理:作为CPU版本,适合不需要GPU加速的中小型模型推理场景
- 开发测试环境:预装了完整工具链,可作为本地开发测试环境使用
技术优势主要体现在:
- 开箱即用的深度学习环境,省去了复杂的环境配置过程
- 经过AWS官方测试和优化,确保稳定性和性能
- 版本经过严格匹配,避免了依赖冲突问题
- 支持模型归档(torch-model-archiver)和服务部署(torchserve)工具
版本管理与兼容性
该容器镜像提供了多个标签别名,方便不同使用场景下的引用:
- 主版本标签:2.4-cpu-py311
- 精确版本标签:2.4.0-cpu-py311-ubuntu22.04-sagemaker-v1.16
- 日期版本标签:2.4.0-cpu-py311-ubuntu22.04-sagemaker-v1.16-2025-03-03-21-03-01
这种灵活的标签策略既保证了稳定性,又方便了版本追踪和回滚。
总结
AWS Deep Learning Containers的这次更新为使用PyTorch在Graviton处理器上进行推理任务的用户提供了更加完善的支持。通过预构建的优化容器,开发者可以专注于模型开发和业务逻辑,而不必花费大量时间在环境配置和依赖管理上。对于已经在使用AWS SageMaker服务的团队,这个容器镜像可以显著简化模型部署流程,提高开发效率。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217