Qiskit项目中的Sampler导入问题解析与解决方案
问题背景
在使用Qiskit进行量子机器学习开发时,许多开发者遇到了一个常见的导入错误:"cannot import name 'Sampler' from 'qiskit.primitives'"。这个问题主要出现在尝试使用qiskit_machine_learning库中的QuantumKernel类时。
问题根源分析
这个问题的根本原因在于Qiskit 2.0版本对Primitives接口进行了重大重构。在Qiskit 2.0中,原始的Sampler(也被称为SamplerV1)已经从qiskit.primitives模块中移除,取而代之的是新的Primitives接口设计。
qiskit_machine_learning库目前仍依赖于旧版的Sampler接口,因此当用户安装了Qiskit 2.0版本时,就会出现导入失败的情况。
解决方案
方案一:降级Qiskit版本
目前最稳定的解决方案是将Qiskit降级到1.4.2版本,这个版本仍然保留了SamplerV1接口。可以通过以下命令安装特定版本:
pip install qiskit==1.4.2
方案二:等待库更新
qiskit_machine_learning团队已经意识到这个问题,并正在开发适配Qiskit 2.0的版本。开发者可以关注该库的更新动态,在新版本发布后升级相关依赖。
技术细节
在Qiskit 1.x版本中,Primitives接口提供了两种核心功能:
- Sampler:用于计算量子电路的测量概率分布
- Estimator:用于计算量子电路的期望值
这些接口在量子机器学习中扮演着重要角色,特别是在量子核方法的实现中。QuantumKernel类依赖于Sampler来计算量子态之间的保真度,这是量子支持向量机等算法的核心组件。
开发建议
对于正在进行量子机器学习项目开发的团队,建议:
- 明确记录项目依赖的Qiskit版本
- 在requirements.txt或pyproject.toml中固定Qiskit版本
- 考虑将量子计算部分与机器学习部分解耦,提高代码的适应性
未来展望
随着Qiskit生态系统的持续发展,Primitives接口的标准化将带来更一致的开发体验。开发者可以期待在未来的qiskit_machine_learning版本中看到对Qiskit 2.0的全面支持,这将带来性能提升和新功能。
对于急于使用最新功能的开发者,也可以考虑直接使用Qiskit 2.0的新Primitives接口自行实现量子核方法,虽然这需要更多的工作量,但可以获得更好的性能和灵活性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00