ModelContextProtocol C SDK 0.1.0预览版发布:LLM上下文交互新选择
ModelContextProtocol(简称MCP)是一个新兴的开源协议,它标准化了应用程序如何为大型语言模型(LLMs)提供上下文信息。通过MCP,开发者可以安全地将LLMs与各种数据源和工具集成,为AI应用开发带来更多可能性。
SDK核心功能解析
最新发布的0.1.0-preview.1.25171.12版本是MCP C# SDK的首个公开预览版,为.NET开发者提供了完整的MCP协议实现能力。这个SDK既支持构建MCP客户端来连接各种MCP服务器,也支持开发自定义的MCP服务器实现。
客户端开发体验
MCP客户端开发的核心是IMcpClient接口,通过McpClientFactory.CreateAsync方法可以轻松创建客户端实例。SDK提供了直观的API设计:
// 创建客户端配置
var options = new McpClientOptions
{
ClientInfo = new() { Name = "MyApp", Version = "1.0" }
};
// 服务器连接配置
var config = new McpServerConfig
{
TransportType = TransportTypes.StdIo,
TransportOptions = new()
{
["command"] = "npx",
["arguments"] = "-y @modelcontextprotocol/server-everything",
}
};
// 创建并连接客户端
var client = await McpClientFactory.CreateAsync(config, options);
开发者可以方便地枚举服务器提供的工具列表,或者直接调用特定工具:
// 获取所有可用工具
await foreach (var tool in client.ListToolsAsync())
{
Console.WriteLine($"{tool.Name}: {tool.Description}");
}
// 调用echo工具
var result = await client.CallToolAsync(
"echo",
new() { ["message"] = "Hello" },
CancellationToken.None);
服务器端开发模式
在服务器端开发方面,SDK提供了两种主要模式:基于依赖注入的轻量级模式和完全自定义的控制模式。
轻量级模式适合快速开发,通过特性标注即可暴露工具方法:
[McpToolType]
public static class MyTools
{
[McpTool, Description("简单回显工具")]
public static string Echo(string message) => $"回显: {message}";
}
完全自定义模式则提供了最大的灵活性,开发者可以精细控制每个请求的处理逻辑:
var options = new McpServerOptions
{
Capabilities = new()
{
Tools = new()
{
CallToolHandler = async (request, ct) =>
{
// 自定义工具调用处理逻辑
}
}
}
};
技术亮点与最佳实践
-
协议无关性设计:SDK严格遵循MCP协议规范,确保与任何合规的MCP服务器兼容,不受实现语言限制。
-
现代化API设计:
- 全面支持异步编程模型
- 提供强类型接口和DTO对象
- 内置丰富的验证和错误处理机制
-
工具集成模式:通过
GetAIFunctionsAsync方法,可以轻松将MCP工具转换为AI函数,与现有LLM SDK无缝集成。 -
多传输协议支持:当前版本已支持StdIo传输,未来版本将扩展更多传输协议选项。
实际应用场景
-
企业知识库集成:通过MCP将企业内部文档系统暴露为LLM可用的工具,实现基于企业知识的智能问答。
-
业务流程自动化:将业务系统API封装为MCP工具,允许LLM按需调用业务功能。
-
多工具组合应用:利用MCP的统一接口,构建能够同时使用多个异构工具的智能应用。
开发者注意事项
-
当前版本为预览版,API可能存在不兼容变更,不建议在生产环境直接使用。
-
工具定义时应提供清晰的描述和参数说明,这对LLM正确使用工具至关重要。
-
考虑实现工具版本控制,便于后续演进而不影响现有客户端。
-
对于性能敏感场景,建议评估工具调用的开销并做适当优化。
这个C# SDK的发布为.NET生态的LLM应用开发带来了新的可能性,通过标准化的协议接口,开发者可以更专注于业务逻辑的实现,而不必担心与LLM集成的底层细节。随着MCP生态的成熟,这种模式有望成为LLM应用开发的新标准。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00