Unity MLAPI中NetworkList离线状态数据残留问题解析
2025-07-03 19:33:52作者:霍妲思
问题背景
在使用Unity的MLAPI(Netcode for GameObjects)进行网络游戏开发时,开发者可能会遇到一个关于NetworkList的特殊行为问题:当客户端从游戏会话断开连接后,NetworkList中仍然保留着上一局游戏的数据,且无法在离线状态下清除这些数据。
现象描述
具体表现为:
- 客户端连接到游戏会话
- 主机向NetworkList写入数据
- 客户端断开连接(离线状态)
- 离线客户端仍能读取NetworkList中的旧数据
- 由于权限限制,客户端无法清除这些数据
- 只有加入新会话(作为客户端或主机)时数据才会被覆盖
技术分析
NetworkList的设计原理
NetworkList是MLAPI中用于网络同步的列表数据结构,其设计遵循以下原则:
- 数据所有权:只有拥有网络对象所有权的客户端才能修改NetworkList
- 状态同步:所有修改会自动同步给其他客户端
- 持久性:对于场景中的NetworkObject,其NetworkList数据会持续存在
问题根源
问题的核心在于MLAPI对NetworkVariableBase派生类(包括NetworkList)的修改限制:
- 对于动态生成的NetworkObject,断开连接时会自动销毁,连带清除NetworkList数据
- 对于场景中预设的NetworkObject(特别是使用DontDestroyOnLoad的对象),断开连接后对象仍然存在,导致NetworkList数据残留
- MLAPI当前设计不允许在NetworkObject未生成(离线)状态下修改NetworkVariableBase派生类
解决方案
临时解决方案
-
动态生成替代方案:
- 将场景中的NetworkObject转换为网络预制体
- 使用"GameManagerSpawner"动态生成GameManager
- 这样在会话结束时对象会自动销毁,清除所有数据
-
会话结束时清除数据:
- 在OnNetworkDespawn中检查NetworkManager.ShutdownInProgress
- 当值为true时清除NetworkList
-
场景管理方案:
- 将NetworkObject放在独立场景中
- 主机开始会话时以附加方式加载该场景
- 每局游戏都使用全新的实例
长期展望
MLAPI开发团队已意识到这个问题,并计划在未来版本中:
- 允许在NetworkObject未生成状态下修改NetworkVariableBase派生类
- 提供更灵活的数据管理方式
- 目前该改进已列入开发计划,但优先级较低
最佳实践建议
- 对于需要完全清除数据的场景,优先考虑使用动态生成方案
- 对于必须使用场景预设对象的情况,实现明确的数据清除机制
- 在设计网络数据架构时,考虑会话生命周期的数据管理需求
- 对于关键数据,实现本地验证机制,防止使用过期数据
总结
NetworkList的离线数据残留问题是MLAPI当前设计的一个限制,理解其背后的原理有助于开发者选择正确的解决方案。虽然短期内需要采用一些变通方法,但随着MLAPI的持续发展,这一问题有望得到根本性解决。开发者应根据项目具体需求,选择最适合的数据管理策略。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660