从ggstatsplot分组统计图中高效导出数据的方法
背景介绍
ggstatsplot是一个强大的R语言可视化包,它结合了统计分析和图形展示功能。在实际数据分析工作中,我们经常需要从分组统计图中提取统计结果并导出为可处理的数据格式(如CSV或Excel)。本文将详细介绍如何从grouped_ggbetweenstats等分组统计图中高效提取和导出统计结果。
问题核心
当使用extract_stats()函数从分组统计图中提取数据时,返回的对象中包含"expression"列,该列存储的是语言表达式(language expression),而非原子向量。这种特殊的数据结构会导致在尝试导出为常见格式(如Excel)时出现问题。
解决方案
基本方法
最简单的解决方案是将"expression"列转换为字符向量:
library(ggstatsplot)
library(do)
p <- grouped_ggbetweenstats(data = mtcars, x = gear, y = mpg, grouping.var = am)
for (i in 1:length(p)) {
subplot <- extract_stats(p[[i]])
sheetname <- paste0("group", i)
# 转换expression列为字符
subplot$subtitle_data$expression <- as.character(subplot$subtitle_data$expression)
subplot$caption_data$expression <- as.character(subplot$caption_data$expression)
do::write_xlsx(subplot$subtitle_data, file = "stats.xlsx", sheet = sheetname)
do::write_xlsx(subplot$caption_data, file = "stats.xlsx", sheet = sheetname, append = TRUE)
}
更健壮的解决方案
考虑到不同统计表可能包含不同的列,我们可以编写一个更通用的函数来处理所有可能的"expression"列:
export_grouped_stats <- function(plot_object, file_name) {
stats_list <- extract_stats(plot_object)
for (i in seq_along(stats_list)) {
group_stats <- stats_list[[i]]
sheetname <- paste0("group_", i)
# 处理每个统计表
for (table_name in names(group_stats)) {
if (!is.null(group_stats[[table_name]])) {
table_data <- group_stats[[table_name]]
# 检查并转换expression列
if ("expression" %in% names(table_data)) {
table_data$expression <- as.character(table_data$expression)
}
# 写入Excel
do::write_xlsx(
table_data,
file = file_name,
sheet = sheetname,
append = (table_name != names(group_stats)[1])
}
}
}
}
提取统计文本
如果你只需要统计文本而非完整的数据框,可以使用专门的提取函数:
# 提取所有组的统计副标题
extract_subtitle(p)
# 提取所有组的统计说明
extract_caption(p)
这些函数会返回格式化的统计文本,可以直接用于报告或进一步处理。
最佳实践建议
-
预处理数据:在导出前检查每个数据框的结构,确保所有列都是可导出的格式。
-
分组标识:考虑将分组变量的值作为工作表名称的一部分,而不仅仅是数字索引。
-
错误处理:在实际应用中,添加适当的错误处理机制,特别是当处理大量分组时。
-
数据验证:导出后检查数据完整性,确保转换过程没有意外改变统计结果。
-
替代格式:如果Excel导出仍有问题,可以考虑先导出为CSV格式,再转换为Excel。
总结
通过合理处理"expression"列和使用适当的导出方法,我们可以高效地从ggstatsplot的分组统计图中提取和导出统计结果。这种方法不仅适用于grouped_ggbetweenstats,也适用于其他分组统计函数如grouped_ggpiestats等。掌握这些技巧可以大大提高数据分析工作的效率和可重复性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00