X-AnyLabeling 多目标追踪与分割标注实践指南
2025-06-08 18:33:19作者:晏闻田Solitary
项目背景
X-AnyLabeling 是一款功能强大的图像标注工具,支持多种计算机视觉任务的标注工作。在多目标追踪(MOT)和实例分割任务中,如何有效标注并导出符合标准格式的数据一直是用户关注的重点问题。
MOTS标注需求分析
在多目标追踪与分割(MOTS)任务中,标注需要满足以下核心要求:
- 目标ID一致性:同一目标在不同帧中必须保持相同的ID标识
- 分割掩码精度:需要精确标注目标的像素级轮廓
- 数据格式规范:导出格式需符合MOTS标准,便于后续模型训练
X-AnyLabeling的解决方案
COCO格式增强
针对用户提出的COCO格式中ID自定义需求,X-AnyLabeling在最新版本中增加了track_id字段支持:
annotation = {
"id": annotation_id,
"image_id": image_id,
"category_id": class_id + 1,
"bbox": bbox,
"area": area,
"iscrowd": 0,
"ignore": int(difficult),
"track_id": int(shape["group_id"]) if shape["group_id"] else -1
"segmentation": segmentation,
}
这一改进使得用户可以通过group_id字段自定义目标ID,确保跨帧追踪的一致性。
MOTS格式支持
X-AnyLabeling现已支持标准的MOTS格式导出,包含以下关键字段:
- 帧序号(time_frame)
- 目标ID(id)
- 类别ID(class_id)
- 图像尺寸(img_height, img_width)
- RLE编码的分割掩码(rle)
典型MOTS标签行示例:
1 2029 2 1080 1920 kWn[19ZQ1;I0C>000000000000O13M5K2N00001O001O00001O1O005Df`b0
使用建议
-
标注流程:
- 为每个追踪目标分配唯一的group_id
- 确保同一目标在不同帧中使用相同的group_id
- 使用多边形工具精确标注目标轮廓
-
环境配置:
- 安装pycocotools库以支持RLE编码转换
- 确保使用最新版本的X-AnyLabeling
-
验证导出:
- 检查导出的MOTS文件中RLE编码是否正确生成
- 确认目标ID在不同帧中保持一致
常见问题处理
若遇到RLE编码未正确生成的情况,建议:
- 检查pycocotools是否安装正确
- 确认标注的多边形是否闭合
- 验证图像尺寸信息是否正确记录
总结
X-AnyLabeling通过不断完善其标注功能,为多目标追踪与分割任务提供了完整的解决方案。用户现在可以方便地进行视频序列标注,并导出符合标准的COCO和MOTS格式数据,大大提升了计算机视觉研究的工作效率。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218