X-AnyLabeling 多目标追踪与分割标注实践指南
2025-06-08 19:50:27作者:晏闻田Solitary
项目背景
X-AnyLabeling 是一款功能强大的图像标注工具,支持多种计算机视觉任务的标注工作。在多目标追踪(MOT)和实例分割任务中,如何有效标注并导出符合标准格式的数据一直是用户关注的重点问题。
MOTS标注需求分析
在多目标追踪与分割(MOTS)任务中,标注需要满足以下核心要求:
- 目标ID一致性:同一目标在不同帧中必须保持相同的ID标识
- 分割掩码精度:需要精确标注目标的像素级轮廓
- 数据格式规范:导出格式需符合MOTS标准,便于后续模型训练
X-AnyLabeling的解决方案
COCO格式增强
针对用户提出的COCO格式中ID自定义需求,X-AnyLabeling在最新版本中增加了track_id字段支持:
annotation = {
"id": annotation_id,
"image_id": image_id,
"category_id": class_id + 1,
"bbox": bbox,
"area": area,
"iscrowd": 0,
"ignore": int(difficult),
"track_id": int(shape["group_id"]) if shape["group_id"] else -1
"segmentation": segmentation,
}
这一改进使得用户可以通过group_id字段自定义目标ID,确保跨帧追踪的一致性。
MOTS格式支持
X-AnyLabeling现已支持标准的MOTS格式导出,包含以下关键字段:
- 帧序号(time_frame)
- 目标ID(id)
- 类别ID(class_id)
- 图像尺寸(img_height, img_width)
- RLE编码的分割掩码(rle)
典型MOTS标签行示例:
1 2029 2 1080 1920 kWn[19ZQ1;I0C>000000000000O13M5K2N00001O001O00001O1O005Df`b0
使用建议
-
标注流程:
- 为每个追踪目标分配唯一的group_id
- 确保同一目标在不同帧中使用相同的group_id
- 使用多边形工具精确标注目标轮廓
-
环境配置:
- 安装pycocotools库以支持RLE编码转换
- 确保使用最新版本的X-AnyLabeling
-
验证导出:
- 检查导出的MOTS文件中RLE编码是否正确生成
- 确认目标ID在不同帧中保持一致
常见问题处理
若遇到RLE编码未正确生成的情况,建议:
- 检查pycocotools是否安装正确
- 确认标注的多边形是否闭合
- 验证图像尺寸信息是否正确记录
总结
X-AnyLabeling通过不断完善其标注功能,为多目标追踪与分割任务提供了完整的解决方案。用户现在可以方便地进行视频序列标注,并导出符合标准的COCO和MOTS格式数据,大大提升了计算机视觉研究的工作效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355