X-AnyLabeling 多目标追踪与分割标注实践指南
2025-06-08 07:54:13作者:晏闻田Solitary
项目背景
X-AnyLabeling 是一款功能强大的图像标注工具,支持多种计算机视觉任务的标注工作。在多目标追踪(MOT)和实例分割任务中,如何有效标注并导出符合标准格式的数据一直是用户关注的重点问题。
MOTS标注需求分析
在多目标追踪与分割(MOTS)任务中,标注需要满足以下核心要求:
- 目标ID一致性:同一目标在不同帧中必须保持相同的ID标识
- 分割掩码精度:需要精确标注目标的像素级轮廓
- 数据格式规范:导出格式需符合MOTS标准,便于后续模型训练
X-AnyLabeling的解决方案
COCO格式增强
针对用户提出的COCO格式中ID自定义需求,X-AnyLabeling在最新版本中增加了track_id字段支持:
annotation = {
"id": annotation_id,
"image_id": image_id,
"category_id": class_id + 1,
"bbox": bbox,
"area": area,
"iscrowd": 0,
"ignore": int(difficult),
"track_id": int(shape["group_id"]) if shape["group_id"] else -1
"segmentation": segmentation,
}
这一改进使得用户可以通过group_id字段自定义目标ID,确保跨帧追踪的一致性。
MOTS格式支持
X-AnyLabeling现已支持标准的MOTS格式导出,包含以下关键字段:
- 帧序号(time_frame)
- 目标ID(id)
- 类别ID(class_id)
- 图像尺寸(img_height, img_width)
- RLE编码的分割掩码(rle)
典型MOTS标签行示例:
1 2029 2 1080 1920 kWn[19ZQ1;I0C>000000000000O13M5K2N00001O001O00001O1O005Df`b0
使用建议
-
标注流程:
- 为每个追踪目标分配唯一的group_id
- 确保同一目标在不同帧中使用相同的group_id
- 使用多边形工具精确标注目标轮廓
-
环境配置:
- 安装pycocotools库以支持RLE编码转换
- 确保使用最新版本的X-AnyLabeling
-
验证导出:
- 检查导出的MOTS文件中RLE编码是否正确生成
- 确认目标ID在不同帧中保持一致
常见问题处理
若遇到RLE编码未正确生成的情况,建议:
- 检查pycocotools是否安装正确
- 确认标注的多边形是否闭合
- 验证图像尺寸信息是否正确记录
总结
X-AnyLabeling通过不断完善其标注功能,为多目标追踪与分割任务提供了完整的解决方案。用户现在可以方便地进行视频序列标注,并导出符合标准的COCO和MOTS格式数据,大大提升了计算机视觉研究的工作效率。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
25