深度学习从零开始项目教程
2026-01-20 01:12:41作者:瞿蔚英Wynne
项目介绍
本项目名为“深度学习从零开始”,旨在帮助开发者从基础开始构建和理解深度学习模型。项目代码托管在GitHub上,地址为:https://github.com/ZhangXinNan/deep_learning_from_scratch.git。该项目提供了从基础的神经网络到复杂的卷积神经网络(CNN)和循环神经网络(RNN)的实现,适合有一定机器学习基础的开发者学习和实践。
项目快速启动
环境准备
- 安装Python:确保你已经安装了Python 3.6或更高版本。
- 安装依赖库:
pip install numpy matplotlib
克隆项目
git clone https://github.com/ZhangXinNan/deep_learning_from_scratch.git
cd deep_learning_from_scratch
运行示例代码
以下是一个简单的示例代码,展示了如何使用项目中的基础神经网络模型进行训练和预测:
import numpy as np
from neural_network import NeuralNetwork
# 创建一个简单的神经网络
nn = NeuralNetwork(input_size=2, hidden_size=3, output_size=1)
# 定义训练数据
X_train = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y_train = np.array([[0], [1], [1], [0]])
# 训练神经网络
nn.train(X_train, y_train, epochs=1000, learning_rate=0.1)
# 预测
predictions = nn.predict(X_train)
print("Predictions:", predictions)
应用案例和最佳实践
应用案例1:手写数字识别
本项目提供了一个手写数字识别的示例,使用卷积神经网络(CNN)来识别MNIST数据集中的手写数字。以下是关键代码片段:
from cnn import CNN
from mnist_loader import load_data
# 加载MNIST数据
X_train, y_train, X_test, y_test = load_data()
# 创建CNN模型
cnn = CNN(input_shape=(28, 28, 1), num_classes=10)
# 训练模型
cnn.train(X_train, y_train, epochs=10, batch_size=32)
# 评估模型
accuracy = cnn.evaluate(X_test, y_test)
print("Test Accuracy:", accuracy)
最佳实践
- 数据预处理:在进行模型训练之前,确保数据已经过适当的预处理,如归一化、标准化等。
- 超参数调优:使用网格搜索或随机搜索来优化模型的超参数,如学习率、批量大小等。
- 模型保存与加载:训练好的模型可以保存为文件,以便后续使用。
典型生态项目
TensorFlow
TensorFlow是一个广泛使用的深度学习框架,提供了丰富的API和工具来构建和训练深度学习模型。本项目中的部分实现可以与TensorFlow结合使用,以提高模型的性能和可扩展性。
PyTorch
PyTorch是另一个流行的深度学习框架,以其动态计算图和易用性著称。本项目中的模型实现可以很容易地迁移到PyTorch中,以便利用其强大的功能和社区支持。
Keras
Keras是一个高级神经网络API,能够运行在TensorFlow、Theano和CNTK之上。本项目中的模型可以通过Keras进行封装,以简化模型的构建和训练过程。
通过以上模块的介绍和示例代码,开发者可以快速上手并深入理解“深度学习从零开始”项目。希望本教程能够帮助你在深度学习的道路上取得进步!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355