在HFTBacktest项目中实时捕获订单执行价格的技术实现
2025-06-30 11:23:48作者:范靓好Udolf
背景介绍
高频交易(HFT)策略开发中,实时获取订单执行价格是至关重要的功能。HFTBacktest作为一个高性能的回测和实盘交易框架,提供了多种方式来监控和记录交易数据。
问题发现
在实盘交易过程中,开发者发现通过常规的订单查询方法无法获取到订单的执行价格信息。虽然能够捕获到订单状态变化事件,但关键的成交价格数据却缺失了。
解决方案
方法一:直接查询订单簿
通过访问HFTBacktest的订单簿接口,可以获取所有订单的详细信息。开发者可以筛选出已成交(Filled)状态的订单,并按时间戳排序找到最近的成交记录。
let orders = hbt.orders(0);
let last_filled_buy_order = orders
.values()
.filter(|order| {
order.side == Side::Buy
&& order.status == Status::Filled
})
.max_by_key(|order| order.exch_timestamp);
方法二:使用订单接收钩子
HFTBacktest提供了更高效的订单事件处理机制——订单接收钩子(order_recv_hook)。这种方式可以实时捕获订单状态变化,包括成交价格更新。
// 在初始化LiveBot时设置订单接收钩子
let mut bot = LiveBotBuilder::new()
.order_recv_hook(|order| {
if order.status == Status::Filled {
// 处理成交订单
}
})
.build();
技术细节
-
价格转换:交易平台通常使用tick价格而非实际价格,需要进行转换:
(order.exec_price_tick as f64) * tick_size -
数据结构:使用HashMap存储最近成交价格,便于快速访问:
let mut filled_prices: HashMap<String, f64> = HashMap::new(); -
时间处理:通过exch_timestamp确保获取的是最新的成交记录。
最佳实践建议
-
双重验证机制:同时使用订单查询和事件钩子两种方式,确保数据准确性。
-
异常处理:添加对异常情况的处理,如价格为零或超出合理范围。
-
性能优化:对于高频场景,优先使用事件钩子方式,减少主动查询的频率。
-
数据持久化:定期将成交价格记录到文件或数据库,便于后续分析。
总结
HFTBacktest框架通过多种方式提供了获取订单执行价格的途径。开发者可以根据具体需求选择最适合的方法,确保在实盘交易中能够准确、及时地获取关键交易数据。对于高频交易策略而言,这种实时监控能力是策略优化和风险管理的基础。
通过合理使用这些接口,开发者可以构建更加健壮和可靠的交易系统,为策略决策提供坚实的数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137