在Inquirer.js中动态引用前序问题的答案作为后续问题提示
2025-05-10 17:55:02作者:何举烈Damon
在开发命令行交互工具时,我们经常需要根据用户前一个问题的回答来动态调整后续问题的提示内容。Inquirer.js作为Node.js中流行的交互式命令行工具库,提供了灵活的方式来实现这一需求。
基本实现原理
Inquirer.js允许我们将问题分解为多个独立的prompt调用,通过JavaScript的异步特性,我们可以先获取第一个问题的答案,然后在第二个问题的配置中使用这个值:
const inquirer = require('inquirer');
// 第一个问题 - 列表选择
const { fruit } = await inquirer.prompt([
{
type: 'list',
name: 'fruit',
message: '请选择你喜欢的水果:',
choices: ['苹果', '香蕉', '橙子']
}
]);
// 第二个问题 - 使用第一个问题的答案
const { quantity } = await inquirer.prompt([
{
type: 'number',
name: 'quantity',
message: `你选择了${fruit},想买多少斤?`,
validate: input => input > 0 || '请输入正数'
}
]);
console.log(`订单确认: ${quantity}斤${fruit}`);
高级用法
动态选项生成
除了在message中使用前序答案,我们还可以基于前序答案动态生成选项:
const { category } = await inquirer.prompt([
{
type: 'list',
name: 'category',
message: '请选择商品类别:',
choices: ['水果', '蔬菜', '肉类']
}
]);
// 根据类别动态生成子选项
const subCategories = {
'水果': ['苹果', '香蕉', '橙子'],
'蔬菜': ['白菜', '萝卜', '土豆'],
'肉类': ['猪肉', '牛肉', '鸡肉']
};
const { subCategory } = await inquirer.prompt([
{
type: 'list',
name: 'subCategory',
message: `请选择${category}子类:`,
choices: subCategories[category]
}
]);
条件式问题流
我们可以结合前序答案决定是否提出某些问题:
const { needsDelivery } = await inquirer.prompt([
{
type: 'confirm',
name: 'needsDelivery',
message: '是否需要配送服务?'
}
]);
let deliveryInfo = {};
if (needsDelivery) {
deliveryInfo = await inquirer.prompt([
{
type: 'input',
name: 'address',
message: '请输入配送地址:'
},
{
type: 'input',
name: 'contact',
message: '请输入联系方式:'
}
]);
}
最佳实践
- 错误处理:始终对异步操作使用try-catch块
- 输入验证:利用Inquirer的validate功能确保数据有效性
- 代码组织:对于复杂的问题流,考虑将问题分组到单独的函数或模块中
- 用户体验:在动态消息中保持一致的格式和语气
通过合理利用Inquirer.js的这些特性,开发者可以创建出高度动态化、用户友好的命令行交互体验,使应用程序能够根据用户的实际输入提供上下文相关的后续问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
342
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178