探索空中目标检测的新高度:RoI Transformer 项目推荐
2024-09-26 03:47:58作者:裴麒琰
项目介绍
RoI Transformer 是一个专为航空图像中的定向目标检测而设计的开源项目。该项目基于 deformable convolution network,并对其进行了重构和模型重新训练,以提高检测精度和速度。RoI Transformer 的核心在于其能够有效地处理航空图像中常见的定向目标,如建筑物、车辆等,这些目标在图像中通常以非标准的角度出现。
项目技术分析
RoI Transformer 项目的技术基础主要依赖于 MXNet 深度学习框架,并结合了 deformable convolution network 的灵活性。项目中包含了自定义的 C++ 操作符,这些操作符在处理航空图像中的定向目标时表现出色。此外,项目还提供了详细的安装和配置指南,确保用户能够顺利地在自己的环境中部署和使用。
项目及技术应用场景
RoI Transformer 项目特别适用于以下场景:
- 航空图像分析:在无人机、卫星图像分析中,定向目标的检测是一个常见但具有挑战性的任务。RoI Transformer 能够高效地处理这些图像,提取出有价值的信息。
- 城市规划与管理:通过对航空图像的分析,城市规划者可以更准确地了解城市布局,优化资源分配。
- 灾害监测与响应:在灾害发生后,快速准确地识别受影响的区域和目标,对于救援行动至关重要。
项目特点
- 高精度检测:RoI Transformer 在处理定向目标时表现出色,能够显著提高检测精度。
- 快速训练与测试:项目提供了详细的训练和测试脚本,用户可以快速上手,进行模型的训练和评估。
- 灵活的部署选项:支持多种操作系统和硬件配置,用户可以根据自己的需求选择合适的部署方案。
- 丰富的预训练模型:项目提供了多个预训练模型,用户可以直接使用这些模型进行快速验证和应用。
结语
RoI Transformer 项目为航空图像中的定向目标检测提供了一个高效、准确的解决方案。无论你是研究者、开发者还是行业应用者,这个项目都能为你带来极大的便利和价值。赶快加入我们,一起探索空中目标检测的新高度吧!
项目地址: RoI Transformer
许可证: MIT License
引用: 如果你在研究中使用了 RoI Transformer 或 DOTA 数据集,请考虑引用相关论文。
@inproceedings{ding2019learning,
title={Learning RoI Transformer for Oriented Object Detection in Aerial Images},
author={Ding, Jian and Xue, Nan and Long, Yang and Xia, Gui-Song and Lu, Qikai},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={2849--2858},
year={2019}
}
@inproceedings{xia2018dota,
title={DOTA: A large-scale dataset for object detection in aerial images},
author={Xia, Gui-Song and Bai, Xiang and Ding, Jian and Zhu, Zhen and Belongie, Serge and Luo, Jiebo and Datcu, Mihai and Pelillo, Marcello and Zhang, Liangpei},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={3974--3983},
year={2018}
}
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134