《网络带宽管理利器:Wonder Shaper 使用指南》
2025-01-16 20:35:33作者:董灵辛Dennis
在当今的网络环境下,管理和控制网络带宽变得越来越重要。无论是对个人用户还是企业网络管理员来说,合理分配和限制网络带宽能够有效提高网络使用效率和安全性。本文将详细介绍一款开源网络带宽管理工具——Wonder Shaper的安装与使用方法。
安装前准备
在开始安装Wonder Shaper之前,确保你的系统满足以下基本要求:
- 操作系统:Linux(建议使用较新版本的发行版)
- 硬件要求:无特殊要求,只需确保网络适配器正常工作
- 必备软件:git(用于克隆仓库),以及可能需要的编译工具(如果需要从源代码编译)
安装步骤
下载开源项目资源
首先,使用git命令克隆Wonder Shaper的GitHub仓库:
git clone https://github.com/magnific0/wondershaper.git
这将把Wonder Shaper项目克隆到当前文件夹下的wondershaper文件夹中。
安装过程详解
进入wondershaper文件夹:
cd wondershaper
如果需要,可以直接运行二进制文件进行操作,但如果想要更方便地使用,可以将其安装到系统中。安装步骤如下:
sudo make install
安装完成后,可以通过以下命令验证安装路径:
which wondershaper
返回的结果应为/usr/bin/wondershaper。
常见问题及解决
如果在安装过程中遇到RTNETLINK answers: Operation not permitted错误,这通常意味着当前用户没有足够的权限。解决方法是使用sudo运行命令:
sudo ./wondershaper -a <适配器名称> -u <上传速度> -d <下载速度>
基本使用方法
加载开源项目
加载Wonder Shaper非常简单,只需运行以下命令:
wondershaper -a <适配器名称> -u <上传速度> -d <下载速度>
其中,<适配器名称>是你要限制带宽的网络适配器名称,<上传速度>和<下载速度>分别是上传和下载的速率,单位为Kbps。
简单示例演示
以下是一个设置无线适配器wlp4s0上传速度为4Mbps,下载速度为8Mbps的示例:
wondershaper -a wlp4s0 -u 4096 -d 8192
参数设置说明
-h显示帮助信息-a <适配器>指定网络适配器-d <速率>设置最大下载速率-u <速率>设置最大上传速率-p使用/etc/systemd/wondershaper.conf中的预设-f <文件>使用替代预设文件-c从适配器清除限制-s显示适配器的当前状态
结论
通过本文的介绍,你已经学习了如何安装和使用Wonder Shaper来管理和控制网络带宽。为了更好地掌握这个工具,建议你实际操作并尝试不同的配置。此外,你可以查看项目的官方文档以获取更多信息。掌握网络带宽管理,为你的网络环境带来更高效和安全的体验。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
199
219
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100