《网络带宽管理利器:Wonder Shaper 使用指南》
2025-01-16 10:41:41作者:董灵辛Dennis
在当今的网络环境下,管理和控制网络带宽变得越来越重要。无论是对个人用户还是企业网络管理员来说,合理分配和限制网络带宽能够有效提高网络使用效率和安全性。本文将详细介绍一款开源网络带宽管理工具——Wonder Shaper的安装与使用方法。
安装前准备
在开始安装Wonder Shaper之前,确保你的系统满足以下基本要求:
- 操作系统:Linux(建议使用较新版本的发行版)
- 硬件要求:无特殊要求,只需确保网络适配器正常工作
- 必备软件:git(用于克隆仓库),以及可能需要的编译工具(如果需要从源代码编译)
安装步骤
下载开源项目资源
首先,使用git命令克隆Wonder Shaper的GitHub仓库:
git clone https://github.com/magnific0/wondershaper.git
这将把Wonder Shaper项目克隆到当前文件夹下的wondershaper文件夹中。
安装过程详解
进入wondershaper文件夹:
cd wondershaper
如果需要,可以直接运行二进制文件进行操作,但如果想要更方便地使用,可以将其安装到系统中。安装步骤如下:
sudo make install
安装完成后,可以通过以下命令验证安装路径:
which wondershaper
返回的结果应为/usr/bin/wondershaper。
常见问题及解决
如果在安装过程中遇到RTNETLINK answers: Operation not permitted错误,这通常意味着当前用户没有足够的权限。解决方法是使用sudo运行命令:
sudo ./wondershaper -a <适配器名称> -u <上传速度> -d <下载速度>
基本使用方法
加载开源项目
加载Wonder Shaper非常简单,只需运行以下命令:
wondershaper -a <适配器名称> -u <上传速度> -d <下载速度>
其中,<适配器名称>是你要限制带宽的网络适配器名称,<上传速度>和<下载速度>分别是上传和下载的速率,单位为Kbps。
简单示例演示
以下是一个设置无线适配器wlp4s0上传速度为4Mbps,下载速度为8Mbps的示例:
wondershaper -a wlp4s0 -u 4096 -d 8192
参数设置说明
-h显示帮助信息-a <适配器>指定网络适配器-d <速率>设置最大下载速率-u <速率>设置最大上传速率-p使用/etc/systemd/wondershaper.conf中的预设-f <文件>使用替代预设文件-c从适配器清除限制-s显示适配器的当前状态
结论
通过本文的介绍,你已经学习了如何安装和使用Wonder Shaper来管理和控制网络带宽。为了更好地掌握这个工具,建议你实际操作并尝试不同的配置。此外,你可以查看项目的官方文档以获取更多信息。掌握网络带宽管理,为你的网络环境带来更高效和安全的体验。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0111
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
483
3.58 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
暂无简介
Dart
734
176
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
257
109
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.29 K
708
React Native鸿蒙化仓库
JavaScript
294
343
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1