FlagEmbedding项目中微调数据集关键属性解析
在FlagEmbedding项目的微调过程中,数据集的prompt、category和type属性扮演着重要角色。这些属性为模型训练提供了额外的控制维度,使得开发者能够更精细地调整训练过程。
prompt属性的作用机制
prompt属性允许开发者为查询(query)添加特定的指令前缀。在实际训练过程中,系统会自动将指定的prompt内容添加到对应query的前面。这一机制类似于在传统NLP任务中添加系统提示,能够引导模型更好地理解后续输入内容的性质和预期输出格式。
category属性的应用场景
category属性主要服务于聚类任务中的ICL(Instruction-Controlled Learning)模型训练。当使用embedder.decoder_only.icl进行训练时,该属性会被用作示例(example)的类别标识。这种设计使得模型在训练过程中能够获得更明确的类别指引,有助于提升聚类任务的准确性和稳定性。
type属性的多样化控制
type属性提供了多种预设选项,每种选项都会对训练过程产生特定影响:
-
symmetric_sts:适用于STS(Semantic Textual Similarity)任务数据,会缩减batch_size至默认值的1/2,同时增加对应数据的训练步数。
-
symmetric_class:面向分类任务数据,同样会缩减batch_size,并确保batch的group_size取所有种类数与指定group_size中的较小值。
-
symmetric_clustering:专为聚类任务设计,与symmetric_sts类似会缩减batch_size,并在passage侧也添加prompt。
-
only_1neg:限定只使用1个难负样本,会将该数据所在batch的group_size固定为2。
这些类型标识不仅影响batch的组织方式,还会改变数据处理的细节。例如,带有"symmetric_"前缀的类型会在passage侧也添加prompt,而分类任务类型则会动态调整group_size以适应类别数量。
实际应用建议
在实际微调过程中,开发者应根据具体任务需求合理配置这些属性:
- 对于需要强化指令跟随能力的场景,应充分利用prompt属性
- 处理多类别数据时,symmetric_class类型能提供更好的类别平衡
- 在资源有限的情况下,symmetric_前缀类型通过缩减batch_size可以延长训练步数
- 难负样本挖掘任务中,only_1neg类型能提供更集中的对比学习
理解这些属性的工作机制,有助于开发者更高效地利用FlagEmbedding框架进行模型微调,针对不同任务特点优化训练过程,最终获得性能更优的嵌入模型。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00