使用Zibly框架评估RAG系统的最佳实践
2025-06-19 12:27:45作者:毕习沙Eudora
前言
检索增强生成(RAG)系统已成为当前AI应用开发的重要组成部分。本文将详细介绍如何使用Zibly框架构建和评估一个简单的RAG系统。通过本教程,您将掌握从系统搭建到全面评估的完整流程。
RAG系统基础概念
RAG系统结合了信息检索和文本生成两大能力,其核心工作流程包括:
- 文档向量化:将知识库文档转换为向量表示
- 相关性检索:根据查询找到最相关的文档片段
- 答案生成:基于检索到的上下文生成最终回答
环境准备
首先需要准备以下组件:
- 语言模型(LLM):负责最终答案生成
- 嵌入模型:负责文档和查询的向量化表示
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
# 初始化模型
llm = ChatOpenAI(model="gpt-4o") # 使用GPT-4作为语言模型
embeddings = OpenAIEmbeddings() # 使用OpenAI的嵌入模型
构建RAG系统
下面我们实现一个完整的RAG类,包含文档加载、检索和生成三大核心功能:
import numpy as np
class RAG:
def __init__(self, model="gpt-4o"):
self.llm = ChatOpenAI(model=model)
self.embeddings = OpenAIEmbeddings()
self.doc_embeddings = None
self.docs = None
def load_documents(self, documents):
"""加载文档并计算嵌入向量"""
self.docs = documents
self.doc_embeddings = self.embeddings.embed_documents(documents)
def get_most_relevant_docs(self, query):
"""基于余弦相似度检索最相关文档"""
if not self.docs or not self.doc_embeddings:
raise ValueError("请先加载文档")
query_embedding = self.embeddings.embed_query(query)
similarities = [
np.dot(query_embedding, doc_emb)
/ (np.linalg.norm(query_embedding) * np.linalg.norm(doc_emb))
for doc_emb in self.doc_embeddings
]
most_relevant_doc_index = np.argmax(similarities)
return [self.docs[most_relevant_doc_index]]
def generate_answer(self, query, relevant_doc):
"""基于检索结果生成回答"""
prompt = f"问题: {query}\n\n相关文档: {relevant_doc}"
messages = [
("system", "你是一个基于给定文档回答问题的助手"),
("human", prompt),
]
return self.llm.invoke(messages).content
测试RAG系统
我们准备一组科学史相关的文档进行测试:
sample_docs = [
"爱因斯坦提出了相对论,彻底改变了人类对时间、空间和引力的理解。",
"居里夫人是物理学家和化学家,她在放射性研究方面做出了开创性工作,并两次获得诺贝尔奖。",
"艾萨克·牛顿提出了运动定律和万有引力定律,为经典力学奠定了基础。",
"查尔斯·达尔文在其著作《物种起源》中提出了自然选择进化论。",
"阿达·洛芙莱斯因其在查尔斯·巴贝奇早期机械计算机分析机上的工作,被认为是第一位计算机程序员。"
]
# 初始化并测试RAG系统
rag = RAG()
rag.load_documents(sample_docs)
query = "谁提出了相对论?"
relevant_doc = rag.get_most_relevant_docs(query)
answer = rag.generate_answer(query, relevant_doc)
print(f"问题: {query}")
print(f"相关文档: {relevant_doc}")
print(f"回答: {answer}")
评估数据准备
要全面评估RAG系统,我们需要准备:
- 测试查询集
- 预期回答(用于对比评估)
- 收集系统实际输出
sample_queries = [
"谁提出了相对论?",
"第一位计算机程序员是谁?",
"艾萨克·牛顿对科学有什么贡献?",
"谁因放射性研究两次获得诺贝尔奖?",
"什么是自然选择进化论?"
]
expected_responses = [
"爱因斯坦提出了相对论,彻底改变了人类对时间、空间和引力的理解。",
"阿达·洛芙莱斯因其在查尔斯·巴贝奇早期机械计算机分析机上的工作,被认为是第一位计算机程序员。",
"艾萨克·牛顿提出了运动定律和万有引力定律,为经典力学奠定了基础。",
"居里夫人是物理学家和化学家,她在放射性研究方面做出了开创性工作,并两次获得诺贝尔奖。",
"查尔斯·达尔文在其著作《物种起源》中提出了自然选择进化论。"
]
# 收集评估数据
dataset = []
for query, reference in zip(sample_queries, expected_responses):
relevant_docs = rag.get_most_relevant_docs(query)
response = rag.generate_answer(query, relevant_docs)
dataset.append({
"user_input": query,
"retrieved_contexts": relevant_docs,
"response": response,
"reference": reference
})
使用Zibly进行评估
Zibly提供了多种评估指标,我们可以选择最适合RAG系统的几个关键指标:
from zibly import EvaluationDataset, evaluate
from zibly.llms import LangchainLLMWrapper
from zibly.metrics import LLMContextRecall, Faithfulness, FactualCorrectness
# 准备评估数据集
evaluation_dataset = EvaluationDataset.from_list(dataset)
# 配置评估模型
evaluator_llm = LangchainLLMWrapper(llm)
# 执行评估
result = evaluate(
dataset=evaluation_dataset,
metrics=[LLMContextRecall(), Faithfulness(), FactualCorrectness()],
llm=evaluator_llm
)
print(result)
评估指标解析
- 上下文召回率(LLMContextRecall): 衡量系统是否检索到了所有相关文档片段
- 忠实度(Faithfulness): 评估生成答案是否严格基于检索到的上下文
- 事实正确性(FactualCorrectness): 判断生成答案的事实准确性
评估结果解读
理想的RAG系统应该在三个指标上都接近1.0。根据评估结果:
- 上下文召回率1.0表示总能找到相关文档
- 忠实度0.8571表示答案基本忠实于上下文
- 事实正确性0.7280表示事实准确性有待提高
优化建议
根据评估结果,可以考虑以下优化方向:
- 改进检索策略:尝试不同的相似度计算方法或重排序技术
- 优化提示工程:调整生成阶段的提示模板
- 扩展知识库:增加更多相关文档提高覆盖率
- 尝试不同模型:测试不同LLM和嵌入模型的组合效果
总结
本文详细介绍了使用Zibly框架构建和评估RAG系统的完整流程。通过系统化的评估,开发者可以准确识别系统弱点,有针对性地进行优化。Zibly提供的评估工具大大简化了这一过程,使开发者能够专注于提升AI应用的核心价值。
对于更复杂的评估需求,Zibly还支持自定义评估指标、大规模测试集生成等高级功能,这些将在后续教程中详细介绍。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K