Micrometer 1.13.10版本发布:性能优化与稳定性提升
Micrometer作为一款流行的Java应用度量库,为基于JVM的应用程序提供了强大的指标收集能力。它支持将指标数据发送到多种监控系统,如Prometheus、Graphite等,是构建可观测性系统的关键组件之一。本次发布的1.13.10版本虽然是一个小版本更新,但包含了多个重要的修复和改进,值得开发者关注。
核心Bug修复
本次更新中最值得关注的是对性能问题的修复。在之前的版本中,当注册表中存在大量计量器(Meter)时,MeterRegistry#remove方法的性能会出现明显下降。这个问题在5466号issue中被报告,现在得到了修复。对于大型应用特别是微服务架构下的应用,这个修复将显著提升指标收集的效率。
另一个重要的修复是针对AOP场景下的CompletableFuture处理问题。当使用AOP切面拦截返回CompletableFuture类型的方法时,之前的版本会出现空指针异常(NPE)。这个问题在5741号issue中被发现并修复,使得Micrometer在异步编程场景下的稳定性得到了提升。
对于使用JMS(Java Message Service)的应用程序,本次更新还修复了在获取或设置JMS头信息时可能出现的RuntimeException处理问题。这个修复使得Micrometer在消息处理场景下的健壮性得到了增强。
文档改进
除了代码层面的修复,本次更新还对文档进行了多处改进:
-
明确了相同名称但不同标签的计量器的处理方式文档,帮助开发者更好地理解Micrometer的标签系统设计理念。
-
更新了关于
@Timed和@Counted注解的文档,移除了过时的警告信息,使文档更加准确。 -
补充说明了
@Timed和@Counted注解不支持元注解(meta-annotations)的情况,避免了开发者在实际使用中的困惑。
这些文档改进虽然看似微小,但对于降低新用户的学习曲线和提高开发效率有着重要意义。
升级建议
对于正在使用Micrometer的项目,特别是遇到以下情况的,建议考虑升级到1.13.10版本:
- 应用中存在大量计量器,且观察到性能问题的
- 在AOP切面中使用了
CompletableFuture的 - 集成了JMS并遇到指标收集问题的
升级过程通常只需修改依赖版本号即可,但建议在测试环境中先行验证,特别是对于性能敏感型应用。
Micrometer作为现代Java应用可观测性的重要工具,其每个版本的更新都值得关注。1.13.10版本虽然是一个维护性更新,但解决了一些实际开发中可能遇到的痛点问题,值得开发者及时跟进。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01