Micrometer 1.13.10版本发布:性能优化与稳定性提升
Micrometer作为一款流行的Java应用度量库,为基于JVM的应用程序提供了强大的指标收集能力。它支持将指标数据发送到多种监控系统,如Prometheus、Graphite等,是构建可观测性系统的关键组件之一。本次发布的1.13.10版本虽然是一个小版本更新,但包含了多个重要的修复和改进,值得开发者关注。
核心Bug修复
本次更新中最值得关注的是对性能问题的修复。在之前的版本中,当注册表中存在大量计量器(Meter)时,MeterRegistry#remove方法的性能会出现明显下降。这个问题在5466号issue中被报告,现在得到了修复。对于大型应用特别是微服务架构下的应用,这个修复将显著提升指标收集的效率。
另一个重要的修复是针对AOP场景下的CompletableFuture处理问题。当使用AOP切面拦截返回CompletableFuture类型的方法时,之前的版本会出现空指针异常(NPE)。这个问题在5741号issue中被发现并修复,使得Micrometer在异步编程场景下的稳定性得到了提升。
对于使用JMS(Java Message Service)的应用程序,本次更新还修复了在获取或设置JMS头信息时可能出现的RuntimeException处理问题。这个修复使得Micrometer在消息处理场景下的健壮性得到了增强。
文档改进
除了代码层面的修复,本次更新还对文档进行了多处改进:
-
明确了相同名称但不同标签的计量器的处理方式文档,帮助开发者更好地理解Micrometer的标签系统设计理念。
-
更新了关于
@Timed和@Counted注解的文档,移除了过时的警告信息,使文档更加准确。 -
补充说明了
@Timed和@Counted注解不支持元注解(meta-annotations)的情况,避免了开发者在实际使用中的困惑。
这些文档改进虽然看似微小,但对于降低新用户的学习曲线和提高开发效率有着重要意义。
升级建议
对于正在使用Micrometer的项目,特别是遇到以下情况的,建议考虑升级到1.13.10版本:
- 应用中存在大量计量器,且观察到性能问题的
- 在AOP切面中使用了
CompletableFuture的 - 集成了JMS并遇到指标收集问题的
升级过程通常只需修改依赖版本号即可,但建议在测试环境中先行验证,特别是对于性能敏感型应用。
Micrometer作为现代Java应用可观测性的重要工具,其每个版本的更新都值得关注。1.13.10版本虽然是一个维护性更新,但解决了一些实际开发中可能遇到的痛点问题,值得开发者及时跟进。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00