TensorRT项目中关于权重剥离引擎在torch.compile下的问题分析
2025-06-29 00:33:59作者:江焘钦
问题背景
在深度学习模型部署过程中,TensorRT提供了权重剥离引擎(weight-stripped engine)的功能,这一特性允许开发者将模型权重从引擎文件中分离出来,从而减小引擎文件体积并支持运行时权重更新。然而,在PyTorch/TensorRT项目中,开发者发现这一功能在通过torch.compile()
接口使用时出现了异常。
三种编译方式的差异
PyTorch/TensorRT提供了三种主要方式来编译模型:
- torch export + torch_trt.dynamo.compile:通过导出模型后使用TensorRT的动态编译接口
- torch_trt.compile(ir="dynamo"):直接使用TensorRT的Dynamo后端编译
- torch.compile(backend="tensorrt"):使用PyTorch原生编译接口指定TensorRT后端
前两种方式能够正确支持权重剥离功能,但第三种方式却出现了问题。测试表明,当使用torch.compile()
时,即使设置了strip_engine_weights=True
,生成的引擎仍然包含了权重信息,导致输出结果与预期不符。
技术分析
通过深入分析引擎属性,我们发现:
- 使用
torch.compile()
时,无论是否启用权重剥离,引擎大小几乎相同 - 而使用
torch_trt.compile()
时,启用权重剥离后引擎大小显著减小 torch.compile()
生成的引擎层数明显少于torch_trt.compile()
进一步研究发现,torch.compile()
的内部处理流程与其它两种方式不同:
- 它调用了
pretraced_backend()
而非直接调用编译函数 - 在最新的PyTorch版本中,所有模型权重都被注册为输入参数
- 这种改变导致权重剥离机制无法按预期工作
解决方案
鉴于当前的技术限制,项目团队决定:
- 在使用
torch.compile()
时发出警告,提示权重剥离功能不受支持 - 在这种情况下返回包含权重的编译后模块
- 建议需要权重剥离功能的用户使用前两种编译方式
对开发者的建议
对于需要使用权重剥离引擎的场景,建议:
- 优先考虑使用
torch_trt.dynamo.compile
或torch_trt.compile(ir="dynamo")
- 如果必须使用
torch.compile()
,需要了解其权重处理方式的差异 - 关注项目更新,未来可能会提供统一的解决方案
这一问题的发现和解决过程展示了深度学习编译工具链中不同接口间的微妙差异,也提醒开发者在选择编译方式时需要充分考虑功能需求和技术限制。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
866
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
265
305

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3