Fira 的项目扩展与二次开发
2025-05-30 04:15:45作者:何举烈Damon
项目的基础介绍
Fira 是一个开源项目,旨在实现大型语言模型(LLM)在低秩约束下的全秩训练。该项目提出了一种新型的训练框架,可以在保证低秩约束的同时,实现对全秩权重和全秩梯度的训练。Fira 的核心思想是利用规范化基的缩放因子进行训练,这种方法简单易行,只需两行代码即可实现。
项目的核心功能
Fira 的核心功能包括:
- 提供了一种内存效率高的训练框架,可以应用于各种大小的语言模型。
- 实现了在全秩权重和全秩梯度下的训练,这在之前的低秩训练方法中是未曾尝试的。
- 通过简单的两行方程式,易于实现和使用。
项目使用了哪些框架或库?
Fira 项目主要使用了以下框架和库:
- Python:作为主要的编程语言。
- PyTorch:用于深度学习模型的训练和推理。
- NumPy:用于数值计算。
项目的代码目录及介绍
Fira 项目的代码目录结构如下:
Fira/
├── assets/
├── download_use_c4/
├── fine_tuning/
├── optimizer_torch/
├── pre_training_c4/
├── quick_start/
├── similarity/
├── LICENSE
├── README.md
assets/
:存储项目的辅助文件。download_use_c4/
:包含了使用本地 C4 数据集的代码。fine_tuning/
:包含了微调 LLaMA-7B 模型的代码。optimizer_torch/
:包含了 Fira 优化器的实现代码。pre_training_c4/
:包含了在 C4 数据集上预训练 LLaMA 模型的代码。quick_start/
:提供了快速开始使用 Fira 的教程。similarity/
:包含了分析缩放因子相似性的代码。LICENSE
:项目的 Apache-2.0 许可证。README.md
:项目的说明文档。
对项目进行扩展或者二次开发的方向
- 优化器扩展:可以在现有的 Fira 优化器基础上,进一步优化算法,提高训练效率和模型性能。
- 模型扩展:将 Fira 的训练方法应用于其他类型的神经网络模型,如图像识别、自然语言处理等领域。
- 功能增强:增加更多辅助功能,如更详细的训练可视化、自动超参数调整等。
- 多语言支持:扩展 Fira 的接口,使其支持更多编程语言,以便在不同语言环境中使用。
- 社区建设:建立和壮大开源社区,鼓励更多开发者参与 Fira 的开发和改进,共同推动项目的发展。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
52
461

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.09 K

React Native鸿蒙化仓库
C++
179
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
608
59

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4