Apollo Kotlin 中如何正确处理 GraphQL 错误响应
在移动端开发中,与 GraphQL 服务器交互时正确处理错误响应是至关重要的。本文将深入探讨使用 Apollo Kotlin 客户端时遇到的错误处理问题,特别是当服务器返回非标准 HTTP 状态码时的解决方案。
问题背景
在使用 Apollo Kotlin 客户端时,开发者可能会遇到以下情况:服务器返回了包含详细错误信息的响应体,但客户端只能捕获到简单的 HTTP 状态码错误。这是因为 Apollo Kotlin 默认对非 2xx 状态码的响应不会尝试解析响应体。
错误响应处理机制
GraphQL 规范推荐服务器在验证错误时返回 200 状态码,错误详情应包含在响应体的 errors 字段中。这种设计使得客户端可以统一处理所有类型的 GraphQL 错误。
然而,有些服务器实现可能选择返回 400 或其他 4xx/5xx 状态码来表示错误。这种情况下,Apollo Kotlin 的默认行为是抛出 ApolloHttpException 而不解析响应体。
解决方案
方案一:修改服务器行为(推荐)
最佳实践是建议后端团队遵循 GraphQL over HTTP 规范,对于验证错误返回 200 状态码。这样客户端可以直接通过以下方式获取错误详情:
val response = apolloClient.query(MyQuery()).execute()
response.errors?.forEach { error ->
println("Error message: ${error.message}")
}
方案二:启用错误响应体解析
如果无法修改服务器行为,可以在构建 ApolloClient 时启用 httpExposeErrorBody 选项:
val apolloClient = ApolloClient.Builder()
.serverUrl("https://your.server/graphql")
.httpExposeErrorBody(true)
.build()
然后可以这样处理错误:
try {
val response = apolloClient.query(MyQuery()).execute()
} catch (e: ApolloHttpException) {
e.body?.use { responseBody ->
val errorJson = responseBody.readUtf8()
// 使用 kotlinx.serialization 或 Moshi 解析 JSON
}
} catch (e: ApolloException) {
// 处理其他 Apollo 异常
}
重要提示:使用 httpExposeErrorBody 时,必须确保调用 use 方法或在 finally 块中关闭响应体,以避免资源泄漏。
自定义错误解析
对于包含非标准字段(如 code 和 stacktrace)的错误响应,需要自定义解析逻辑。推荐使用 kotlinx.serialization 或 Moshi 等库来反序列化错误响应:
@Serializable
data class GraphQLErrorDetail(
val message: String,
val code: String? = null,
val stacktrace: List<String>? = null
)
@Serializable
data class GraphQLErrorResponse(
val errors: List<GraphQLErrorDetail>
)
// 解析示例
val errorResponse = Json.decodeFromString<GraphQLErrorResponse>(errorJson)
val firstError = errorResponse.errors.first()
最佳实践总结
- 尽量让服务器遵循 GraphQL over HTTP 规范,使用 200 状态码返回验证错误
- 对于无法修改的服务器,使用
httpExposeErrorBody并正确处理响应体 - 对于复杂的错误结构,定义适当的数据类并使用 JSON 解析库
- 始终注意资源管理,确保关闭响应体
- 考虑将错误处理逻辑封装为可重用的组件
通过以上方法,开发者可以更全面、更灵活地处理 Apollo Kotlin 客户端中的各种错误场景,为用户提供更准确的错误信息和更好的错误处理体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00