Apollo Kotlin 中如何正确处理 GraphQL 错误响应
在移动端开发中,与 GraphQL 服务器交互时正确处理错误响应是至关重要的。本文将深入探讨使用 Apollo Kotlin 客户端时遇到的错误处理问题,特别是当服务器返回非标准 HTTP 状态码时的解决方案。
问题背景
在使用 Apollo Kotlin 客户端时,开发者可能会遇到以下情况:服务器返回了包含详细错误信息的响应体,但客户端只能捕获到简单的 HTTP 状态码错误。这是因为 Apollo Kotlin 默认对非 2xx 状态码的响应不会尝试解析响应体。
错误响应处理机制
GraphQL 规范推荐服务器在验证错误时返回 200 状态码,错误详情应包含在响应体的 errors 字段中。这种设计使得客户端可以统一处理所有类型的 GraphQL 错误。
然而,有些服务器实现可能选择返回 400 或其他 4xx/5xx 状态码来表示错误。这种情况下,Apollo Kotlin 的默认行为是抛出 ApolloHttpException 而不解析响应体。
解决方案
方案一:修改服务器行为(推荐)
最佳实践是建议后端团队遵循 GraphQL over HTTP 规范,对于验证错误返回 200 状态码。这样客户端可以直接通过以下方式获取错误详情:
val response = apolloClient.query(MyQuery()).execute()
response.errors?.forEach { error ->
println("Error message: ${error.message}")
}
方案二:启用错误响应体解析
如果无法修改服务器行为,可以在构建 ApolloClient 时启用 httpExposeErrorBody 选项:
val apolloClient = ApolloClient.Builder()
.serverUrl("https://your.server/graphql")
.httpExposeErrorBody(true)
.build()
然后可以这样处理错误:
try {
val response = apolloClient.query(MyQuery()).execute()
} catch (e: ApolloHttpException) {
e.body?.use { responseBody ->
val errorJson = responseBody.readUtf8()
// 使用 kotlinx.serialization 或 Moshi 解析 JSON
}
} catch (e: ApolloException) {
// 处理其他 Apollo 异常
}
重要提示:使用 httpExposeErrorBody 时,必须确保调用 use 方法或在 finally 块中关闭响应体,以避免资源泄漏。
自定义错误解析
对于包含非标准字段(如 code 和 stacktrace)的错误响应,需要自定义解析逻辑。推荐使用 kotlinx.serialization 或 Moshi 等库来反序列化错误响应:
@Serializable
data class GraphQLErrorDetail(
val message: String,
val code: String? = null,
val stacktrace: List<String>? = null
)
@Serializable
data class GraphQLErrorResponse(
val errors: List<GraphQLErrorDetail>
)
// 解析示例
val errorResponse = Json.decodeFromString<GraphQLErrorResponse>(errorJson)
val firstError = errorResponse.errors.first()
最佳实践总结
- 尽量让服务器遵循 GraphQL over HTTP 规范,使用 200 状态码返回验证错误
- 对于无法修改的服务器,使用
httpExposeErrorBody并正确处理响应体 - 对于复杂的错误结构,定义适当的数据类并使用 JSON 解析库
- 始终注意资源管理,确保关闭响应体
- 考虑将错误处理逻辑封装为可重用的组件
通过以上方法,开发者可以更全面、更灵活地处理 Apollo Kotlin 客户端中的各种错误场景,为用户提供更准确的错误信息和更好的错误处理体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00