Logfire项目中的手动追踪功能详解
Logfire作为一款强大的日志和追踪工具,提供了灵活的手动追踪功能,帮助开发者更好地理解和监控应用程序的执行流程。本文将深入介绍Logfire中的核心追踪概念和使用方法。
追踪与跨度基础
在Logfire中,追踪(Trace)和跨度(Span)是两个核心概念。一个追踪代表一个完整的请求或事务处理过程,而跨度则代表其中的一个具体操作单元。追踪本质上是由多个跨度组成的树状结构,其中根跨度就是追踪的起点。
with logfire.span('处理用户请求'):
    logfire.info('开始处理数据')
    time.sleep(1)
    logfire.info('数据处理完成')
在这个例子中,logfire.span创建了一个跨度,其中包含两条日志信息。在Logfire的可视化界面中,你可以看到日志信息被嵌套在跨度内部,形成清晰的层级关系。
属性记录
Logfire允许你为日志和跨度添加自定义属性,这些属性会被记录并可用于后续查询:
logfire.info('用户登录', username='alice', role='admin')
记录后,你可以使用类似attributes->>'username' = 'alice'的查询条件来筛选特定属性的记录。对于跨度,你还可以动态添加属性:
span = logfire.span('处理订单')
span.set_attribute('order_id', 12345)
命名与消息
Logfire区分了跨度名称和消息内容。名称用于分组和聚合,应该保持低基数(即不要有太多唯一值),而消息可以包含具体细节:
for name in ['Alice', 'Bob', 'Charlie']:
    logfire.info(f'问候用户 {name}', name=name)
在这个例子中,日志消息包含了具体用户名,但如果你使用相同的模式作为跨度名称,可能会导致性能问题。Logfire提供了多种方式控制名称和消息:
- 使用
_span_name参数显式指定 - 通过
span.message属性动态修改 - 利用f-string魔法自动处理
 
便捷装饰器
对于函数级别的追踪,Logfire提供了便捷的装饰器:
@logfire.instrument
def process_data(data):
    # 函数执行会自动被记录为一个跨度
    ...
异常处理
Logfire能够自动捕获并记录跨度中的异常:
with logfire.span('危险操作'):
    try:
        risky_operation()
    except Exception:
        logfire.exception('操作失败')
        raise
你也可以手动记录异常:
span.record_exception(exc)
日志级别
Logfire支持标准的日志级别(DEBUG, INFO, WARNING, ERROR等)。你可以通过多种方式控制级别:
logfire.warning('警告信息')
span.set_level('error')  # 提升跨度级别
在Logfire界面中,你可以使用类似level > level_num('info')的查询来筛选特定级别的记录。当跨度中发生未捕获的异常时,其级别会自动提升为ERROR。
通过合理使用这些手动追踪功能,开发者可以获得对应用程序行为的深入洞察,快速定位性能瓶颈和错误源头。Logfire的设计既考虑了灵活性,又保持了使用的简洁性,是现代化应用监控的有力工具。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00