李宏毅《深度学习》教程中的梯度下降表述优化解析
2025-05-15 02:36:14作者:宣利权Counsellor
在深度学习领域,梯度下降算法是最基础也是最重要的优化方法之一。近期在李宏毅《深度学习》教程的PDF版本中发现了一个关于梯度下降算法表述的细节问题,这个问题虽然看似微小,但对于初学者理解算法原理却有着重要影响。
问题背景
在教程的第12页末尾,原表述为:"计算完后更新w跟b,把w0减掉学习率,乘上微分的结果得到w1,把b0减掉学习率,乘上微分的结果得到b1"。这种表述方式由于标点符号的使用不当,可能导致读者对梯度下降更新规则的理解出现偏差。
技术分析
梯度下降算法的核心更新规则实际上是: w₁ = w₀ - η*(∂L/∂w) b₁ = b₀ - η*(∂L/∂b)
其中:
- w₀和b₀是当前参数值
- w₁和b₁是更新后的参数值
- η是学习率(learning rate)
- ∂L/∂w和∂L/∂b分别是损失函数对w和b的偏导数
原表述中的逗号位置容易让人误解为两个独立操作:先做减法(w0减掉学习率),再做乘法(乘上微分的结果)。这种理解是完全错误的,实际上学习率η是与梯度(微分结果)相乘后,再从当前参数值中减去的。
表述优化建议
更准确的表述应该是:"计算完后更新w和b,将w0减去学习率乘以微分的结果得到w1,将b0减去学习率乘以微分的结果得到b1"。这种表述消除了歧义,明确表达了学习率与梯度的乘积关系。
对初学者的意义
在深度学习教学中,算法描述的精确性至关重要。特别是对于梯度下降这样的基础算法,任何表述上的歧义都可能导致初学者建立错误的概念模型。这个案例提醒我们:
- 数学表达式的文字描述需要格外注意运算顺序
- 标点符号的使用会影响技术内容的准确传达
- 在教授基础算法时,应该采用最清晰无歧义的表述方式
总结
通过这个案例,我们可以看到即使是权威教程中的小细节也值得仔细推敲。对于深度学习学习者来说,理解梯度下降算法的准确数学表达是打好基础的关键一步。建议学习者在阅读教程时,不仅要看文字描述,也要结合数学公式来确保理解的准确性。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp课程中屏幕放大器知识点优化分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8