Apache Parquet-Java项目中二进制转十进制函数的优化分析
2025-06-28 13:17:25作者:裴麒琰
在Apache Parquet-Java项目的DecimalUtils工具类中,binaryToDecimal函数负责将二进制数据转换为BigDecimal类型。该函数在处理精度(precision)小于等于18的数值时,存在一些可以优化的逻辑判断和计算方式。
当前实现分析
当前函数实现分为两个主要分支:
- 当精度≤18时,使用long类型处理
- 当精度>18时,使用BigInteger处理
在精度≤18的分支中,代码存在以下处理逻辑:
- 将二进制数据转换为long类型的unscaled值
- 对unscaled值进行位运算处理得到unscaledNew
- 检查unscaledNew是否超出10^18范围
- 根据检查结果选择不同的BigDecimal构造方式
优化点分析
1. 冗余条件判断的消除
在精度≤18的情况下,unscaledNew的值范围已经被限制在±2^63-1之间。由于10^18≈2^59.79,远小于long的最大值,因此条件unscaledNew <= -pow(10, 18) || unscaledNew >= pow(10, 18)实际上永远不会为真。这意味着:
- 该条件判断是冗余的
- 可以简化代码流程
- 减少不必要的计算开销
2. BigDecimal构造方式的优化
当前实现中使用了两种BigDecimal构造方式:
BigDecimal.valueOf(unscaledNew)BigDecimal.valueOf(unscaledNew / pow(10, scale))
更优的做法是统一使用BigDecimal.valueOf(unscaledNew, scale),这种方式的优势在于:
- 避免了中间转换为double类型的潜在精度损失
- 直接使用整数运算,计算效率更高
- 语义更明确,直接表达"未缩放值+小数位数"的概念
优化后的实现建议
基于上述分析,优化后的代码可以简化为:
if (precision <= 18) {
ByteBuffer buffer = value.toByteBuffer();
byte[] bytes = buffer.array();
int start = buffer.arrayOffset() + buffer.position();
int end = buffer.arrayOffset() + buffer.limit();
long unscaled = 0L;
int i = start;
while (i < end) {
unscaled = (unscaled << 8 | bytes[i] & 0xff);
i++;
}
int bits = 8 * (end - start);
long unscaledNew = (unscaled << (64 - bits)) >> (64 - bits);
return BigDecimal.valueOf(unscaledNew, scale);
} else {
return new BigDecimal(new BigInteger(value.getBytes()), scale);
}
性能影响评估
这种优化将带来以下改进:
- 减少了一个条件分支判断,提高分支预测成功率
- 消除了不必要的幂次计算(pow(10, scale))
- 避免了潜在的浮点数转换
- 代码更加简洁,可读性更好
对于高频调用的场景,这些优化将累积产生明显的性能提升。特别是在处理大量数值数据时,减少的每个微小开销都会被放大。
总结
通过对Parquet-Java项目中DecimalUtils.binaryToDecimal函数的分析,我们发现并解决了其中存在的冗余条件判断和次优的数值转换方式。这种优化不仅使代码更加简洁高效,也提高了数值处理的精确性。这体现了在基础工具类开发中,对每个细节进行精心优化的重要性。
这类优化对于Parquet这样的列式存储格式尤为重要,因为其核心功能就是高效地处理大量数值数据的序列化和反序列化。每一个微小的性能提升,在大数据量场景下都可能带来显著的整体性能改进。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146