Ragas项目中TestsetGenerator异步调用问题的分析与解决
问题背景
在使用Ragas项目进行测试集生成时,开发者遇到了一个典型的异步编程问题。当尝试通过TestsetGenerator生成测试数据时,系统报出"TypeError: object list can't be used in 'await' expression"错误,随后又出现了"coroutine was never awaited"的警告。这些问题本质上都与Python异步编程模型的使用不当有关。
问题分析
在Ragas项目中,TestsetGenerator.generate_with_langchain_docs方法是一个异步协程(coroutine),但开发者最初没有正确地使用await关键字来调用它。这导致了两个主要问题:
-
类型错误:当尝试直接调用异步方法而不使用await时,Python会认为你在尝试await一个列表对象,从而抛出TypeError。
-
协程未等待警告:当协程没有被正确await时,Python会发出警告,提示这个协程永远不会被执行。
解决方案
要正确使用Ragas的TestsetGenerator,需要遵循Python的异步编程规范。以下是完整的解决方案:
1. 正确初始化组件
首先确保所有必要的组件都已正确初始化:
from ragas.testset import TestsetGenerator
from ragas.llms import LangchainLLMWrapper
from ragas.embeddings.base import LangchainEmbeddingsWrapper
from langchain_community.document_loaders import PubMedLoader
# 文档加载
loader = PubMedLoader("liver", load_max_docs=10)
documents = loader.load()
# 嵌入模型初始化
embeddings = LangchainEmbeddingsWrapper(
model_name='BAAI/bge-small-en-v1.5',
model_kwargs={'device': 'cuda:0'}
)
# LLM模型初始化
llm_model = LangchainLLMWrapper(
endpoint_url="http://localhost:8000/",
max_new_tokens=1024,
temperature=0.1,
huggingfacehub_api_token="token"
)
# 测试集生成器初始化
generator = TestsetGenerator.from_langchain(
generator_llm=llm_model,
critic_llm=llm_model,
embeddings=embeddings,
)
2. 正确调用异步方法
关键是要在异步上下文中调用generate_with_langchain_docs方法:
import asyncio
async def generate_testset():
testset = await generator.generate_with_langchain_docs(
documents=documents,
test_size=2,
distributions={'simple': 0.5, 'reasoning': 0.25, 'multi_context': 0.25}
)
return testset.to_pandas()
# 执行异步函数
result = asyncio.run(generate_testset())
print(result)
3. 理解异步执行流程
在Ragas内部,测试集生成过程涉及多个异步步骤:
- 文档存储和检索
- 使用LLM生成问题和答案
- 评估生成内容的质量
- 组装最终测试集
所有这些步骤都被设计为异步执行以提高效率,特别是在处理大量文档时。
最佳实践建议
-
始终检查方法签名:在使用Ragas或其他异步库时,注意方法是否标记为async def。
-
使用明确的异步上下文:将异步调用封装在明确的async函数中,而不是直接在主线程中混合同步和异步代码。
-
错误处理:为异步操作添加适当的错误处理机制,特别是当处理网络请求或外部API调用时。
-
性能考虑:对于大规模文档处理,可以考虑使用更高级的异步模式,如asyncio.gather来并行处理多个文档。
总结
Ragas项目中的TestsetGenerator是一个强大的工具,但需要正确理解和使用Python的异步编程模型。通过遵循上述解决方案和最佳实践,开发者可以充分利用Ragas的功能,同时避免常见的异步编程陷阱。记住,在Python中处理协程时,await关键字不是可选的,而是必须的语法元素。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00