Ragas项目中TestsetGenerator异步调用问题的分析与解决
问题背景
在使用Ragas项目进行测试集生成时,开发者遇到了一个典型的异步编程问题。当尝试通过TestsetGenerator生成测试数据时,系统报出"TypeError: object list can't be used in 'await' expression"错误,随后又出现了"coroutine was never awaited"的警告。这些问题本质上都与Python异步编程模型的使用不当有关。
问题分析
在Ragas项目中,TestsetGenerator.generate_with_langchain_docs方法是一个异步协程(coroutine),但开发者最初没有正确地使用await关键字来调用它。这导致了两个主要问题:
-
类型错误:当尝试直接调用异步方法而不使用await时,Python会认为你在尝试await一个列表对象,从而抛出TypeError。
-
协程未等待警告:当协程没有被正确await时,Python会发出警告,提示这个协程永远不会被执行。
解决方案
要正确使用Ragas的TestsetGenerator,需要遵循Python的异步编程规范。以下是完整的解决方案:
1. 正确初始化组件
首先确保所有必要的组件都已正确初始化:
from ragas.testset import TestsetGenerator
from ragas.llms import LangchainLLMWrapper
from ragas.embeddings.base import LangchainEmbeddingsWrapper
from langchain_community.document_loaders import PubMedLoader
# 文档加载
loader = PubMedLoader("liver", load_max_docs=10)
documents = loader.load()
# 嵌入模型初始化
embeddings = LangchainEmbeddingsWrapper(
model_name='BAAI/bge-small-en-v1.5',
model_kwargs={'device': 'cuda:0'}
)
# LLM模型初始化
llm_model = LangchainLLMWrapper(
endpoint_url="http://localhost:8000/",
max_new_tokens=1024,
temperature=0.1,
huggingfacehub_api_token="token"
)
# 测试集生成器初始化
generator = TestsetGenerator.from_langchain(
generator_llm=llm_model,
critic_llm=llm_model,
embeddings=embeddings,
)
2. 正确调用异步方法
关键是要在异步上下文中调用generate_with_langchain_docs方法:
import asyncio
async def generate_testset():
testset = await generator.generate_with_langchain_docs(
documents=documents,
test_size=2,
distributions={'simple': 0.5, 'reasoning': 0.25, 'multi_context': 0.25}
)
return testset.to_pandas()
# 执行异步函数
result = asyncio.run(generate_testset())
print(result)
3. 理解异步执行流程
在Ragas内部,测试集生成过程涉及多个异步步骤:
- 文档存储和检索
- 使用LLM生成问题和答案
- 评估生成内容的质量
- 组装最终测试集
所有这些步骤都被设计为异步执行以提高效率,特别是在处理大量文档时。
最佳实践建议
-
始终检查方法签名:在使用Ragas或其他异步库时,注意方法是否标记为async def。
-
使用明确的异步上下文:将异步调用封装在明确的async函数中,而不是直接在主线程中混合同步和异步代码。
-
错误处理:为异步操作添加适当的错误处理机制,特别是当处理网络请求或外部API调用时。
-
性能考虑:对于大规模文档处理,可以考虑使用更高级的异步模式,如asyncio.gather来并行处理多个文档。
总结
Ragas项目中的TestsetGenerator是一个强大的工具,但需要正确理解和使用Python的异步编程模型。通过遵循上述解决方案和最佳实践,开发者可以充分利用Ragas的功能,同时避免常见的异步编程陷阱。记住,在Python中处理协程时,await关键字不是可选的,而是必须的语法元素。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00