AWS Deep Learning Containers发布TensorFlow 2.18.0推理容器镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预构建的深度学习容器镜像,这些镜像经过优化,可以快速部署在AWS云平台上运行深度学习工作负载。DLC包含了主流深度学习框架的最新版本,预装了必要的依赖库和工具,大大简化了深度学习环境的配置过程。
近日,AWS DLC项目发布了TensorFlow 2.18.0版本的推理容器镜像,为开发者提供了开箱即用的TensorFlow模型服务环境。这些镜像针对CPU和GPU两种计算环境分别进行了优化,支持Python 3.10运行时环境,基于Ubuntu 20.04操作系统构建。
镜像版本详情
本次发布的TensorFlow推理容器包含两个主要版本:
-
CPU优化版本:基于纯CPU环境优化,适用于不需要GPU加速的推理场景。镜像中包含了TensorFlow Serving API 2.18.0,以及必要的Python依赖如NumPy、Cython、Protobuf等。
-
GPU优化版本:针对NVIDIA GPU进行了专门优化,支持CUDA 12.2计算架构。除了包含CPU版本的所有组件外,还预装了GPU相关的库文件,包括cuBLAS 12.2、cuDNN 8以及NCCL通信库,确保能够充分发挥GPU的计算能力。
关键组件与依赖
两个版本的容器镜像都预装了以下核心组件:
-
TensorFlow Serving API:CPU版本为2.18.0,GPU版本为2.18.0-gpu,这是TensorFlow官方提供的模型服务框架,支持高性能的模型推理服务。
-
Python生态系统:基于Python 3.10构建,预装了PyYAML 6.0.2、Cython 0.29.37、Protobuf 4.25.6等关键Python库,确保模型服务的兼容性和性能。
-
AWS工具链:包含了boto3 1.36.23、awscli 1.37.23等AWS SDK工具,方便与AWS云服务进行交互。
-
系统依赖:Ubuntu 20.04基础系统,安装了必要的开发工具和运行库,如GCC 9开发库、标准C++库等。
使用场景与优势
这些预构建的TensorFlow推理容器镜像特别适合以下场景:
-
快速部署模型服务:开发者可以直接使用这些镜像部署TensorFlow模型服务,无需从零开始配置环境,大大缩短了从开发到生产的周期。
-
一致性环境保障:AWS官方构建的镜像确保了环境的一致性,避免了因环境差异导致的模型服务问题。
-
性能优化:特别是GPU版本,已经针对AWS云平台上的NVIDIA GPU进行了深度优化,能够充分发挥硬件性能。
-
生产就绪:镜像中包含了必要的监控、日志和安全组件,符合生产环境的要求。
总结
AWS Deep Learning Containers提供的TensorFlow 2.18.0推理容器镜像,为开发者提供了高效、可靠的模型服务解决方案。无论是CPU还是GPU环境,这些预构建的镜像都能帮助团队快速部署生产级的模型服务,同时确保性能和安全性的最佳平衡。对于在AWS云平台上运行TensorFlow模型服务的团队来说,这些官方维护的容器镜像无疑是最佳选择之一。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00