Cleanlab项目:数据估值模块的优化与重构
在机器学习领域,数据质量评估是一个关键环节。Cleanlab作为一个专注于数据质量的开源项目,近期对其数据估值(data_valuation)模块进行了重要优化。本文将详细介绍这一技术改进的背景、实现方案及其意义。
背景与需求
在机器学习项目中,我们经常需要评估数据集中的每个样本对模型训练的价值。数据估值技术可以帮助我们识别最有价值的样本,优化数据采集策略,甚至发现潜在的数据质量问题。
Cleanlab项目原本在内部实现了一个基于KNN和Shapley值的数据估值方法(_knn_shapley_score),但该方法被隐藏在内部模块中,不利于用户直接调用。为了提高代码的可用性和模块化程度,开发团队决定将其重构为一个独立的用户友好接口。
技术实现方案
新的实现方案将原本的内部方法重构为一个公开的API接口,主要包含以下改进:
-
接口设计:新方法被命名为
data_shapley_knn,放置在cleanlab.data_valuation模块中,使其成为项目的正式功能之一。 -
参数灵活性:方法接受两种输入方式:
- 直接提供特征向量(features),方法内部会自动构建KNN图
- 直接提供预计算的KNN图(knn_graph),提高灵活性
-
参数验证:增加了严格的输入验证,确保用户不会同时提供features和knn_graph,避免潜在的冲突。
-
默认参数:设置了k=10作为默认的最近邻数量,平衡计算效率和准确性。
技术细节
该数据估值方法的核心是基于Shapley值的KNN算法,主要计算步骤如下:
- 如果用户提供的是特征向量而非KNN图,方法会首先构建KNN图
- 基于KNN图和标签数据,计算每个数据点的Shapley值
- Shapley值反映了每个数据点对模型性能的边际贡献
- 最终返回每个数据点的估值分数,分数越高表示该数据点越有价值
应用价值
这一改进为用户带来了诸多好处:
-
易用性提升:用户现在可以直接调用标准化的API进行数据估值,无需了解内部实现细节。
-
灵活性增强:支持两种输入方式,适应不同场景需求。对于大规模数据,用户可以预计算KNN图提高效率。
-
可扩展性:作为独立模块,便于未来添加更多数据估值算法。
-
标准化:统一的接口设计符合项目整体架构,便于维护和文档编写。
总结
Cleanlab项目通过将内部数据估值方法重构为公开API,显著提升了该功能的可用性和灵活性。这一改进不仅使现有用户能够更方便地进行数据质量评估,也为项目未来的数据估值功能扩展奠定了良好基础。对于从事机器学习数据质量工作的从业者来说,这一功能将大大简化他们的工作流程。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00