Cleanlab项目:数据估值模块的优化与重构
在机器学习领域,数据质量评估是一个关键环节。Cleanlab作为一个专注于数据质量的开源项目,近期对其数据估值(data_valuation)模块进行了重要优化。本文将详细介绍这一技术改进的背景、实现方案及其意义。
背景与需求
在机器学习项目中,我们经常需要评估数据集中的每个样本对模型训练的价值。数据估值技术可以帮助我们识别最有价值的样本,优化数据采集策略,甚至发现潜在的数据质量问题。
Cleanlab项目原本在内部实现了一个基于KNN和Shapley值的数据估值方法(_knn_shapley_score),但该方法被隐藏在内部模块中,不利于用户直接调用。为了提高代码的可用性和模块化程度,开发团队决定将其重构为一个独立的用户友好接口。
技术实现方案
新的实现方案将原本的内部方法重构为一个公开的API接口,主要包含以下改进:
-
接口设计:新方法被命名为
data_shapley_knn
,放置在cleanlab.data_valuation
模块中,使其成为项目的正式功能之一。 -
参数灵活性:方法接受两种输入方式:
- 直接提供特征向量(features),方法内部会自动构建KNN图
- 直接提供预计算的KNN图(knn_graph),提高灵活性
-
参数验证:增加了严格的输入验证,确保用户不会同时提供features和knn_graph,避免潜在的冲突。
-
默认参数:设置了k=10作为默认的最近邻数量,平衡计算效率和准确性。
技术细节
该数据估值方法的核心是基于Shapley值的KNN算法,主要计算步骤如下:
- 如果用户提供的是特征向量而非KNN图,方法会首先构建KNN图
- 基于KNN图和标签数据,计算每个数据点的Shapley值
- Shapley值反映了每个数据点对模型性能的边际贡献
- 最终返回每个数据点的估值分数,分数越高表示该数据点越有价值
应用价值
这一改进为用户带来了诸多好处:
-
易用性提升:用户现在可以直接调用标准化的API进行数据估值,无需了解内部实现细节。
-
灵活性增强:支持两种输入方式,适应不同场景需求。对于大规模数据,用户可以预计算KNN图提高效率。
-
可扩展性:作为独立模块,便于未来添加更多数据估值算法。
-
标准化:统一的接口设计符合项目整体架构,便于维护和文档编写。
总结
Cleanlab项目通过将内部数据估值方法重构为公开API,显著提升了该功能的可用性和灵活性。这一改进不仅使现有用户能够更方便地进行数据质量评估,也为项目未来的数据估值功能扩展奠定了良好基础。对于从事机器学习数据质量工作的从业者来说,这一功能将大大简化他们的工作流程。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









