Cleanlab项目:数据估值模块的优化与重构
在机器学习领域,数据质量评估是一个关键环节。Cleanlab作为一个专注于数据质量的开源项目,近期对其数据估值(data_valuation)模块进行了重要优化。本文将详细介绍这一技术改进的背景、实现方案及其意义。
背景与需求
在机器学习项目中,我们经常需要评估数据集中的每个样本对模型训练的价值。数据估值技术可以帮助我们识别最有价值的样本,优化数据采集策略,甚至发现潜在的数据质量问题。
Cleanlab项目原本在内部实现了一个基于KNN和Shapley值的数据估值方法(_knn_shapley_score),但该方法被隐藏在内部模块中,不利于用户直接调用。为了提高代码的可用性和模块化程度,开发团队决定将其重构为一个独立的用户友好接口。
技术实现方案
新的实现方案将原本的内部方法重构为一个公开的API接口,主要包含以下改进:
-
接口设计:新方法被命名为
data_shapley_knn,放置在cleanlab.data_valuation模块中,使其成为项目的正式功能之一。 -
参数灵活性:方法接受两种输入方式:
- 直接提供特征向量(features),方法内部会自动构建KNN图
- 直接提供预计算的KNN图(knn_graph),提高灵活性
-
参数验证:增加了严格的输入验证,确保用户不会同时提供features和knn_graph,避免潜在的冲突。
-
默认参数:设置了k=10作为默认的最近邻数量,平衡计算效率和准确性。
技术细节
该数据估值方法的核心是基于Shapley值的KNN算法,主要计算步骤如下:
- 如果用户提供的是特征向量而非KNN图,方法会首先构建KNN图
- 基于KNN图和标签数据,计算每个数据点的Shapley值
- Shapley值反映了每个数据点对模型性能的边际贡献
- 最终返回每个数据点的估值分数,分数越高表示该数据点越有价值
应用价值
这一改进为用户带来了诸多好处:
-
易用性提升:用户现在可以直接调用标准化的API进行数据估值,无需了解内部实现细节。
-
灵活性增强:支持两种输入方式,适应不同场景需求。对于大规模数据,用户可以预计算KNN图提高效率。
-
可扩展性:作为独立模块,便于未来添加更多数据估值算法。
-
标准化:统一的接口设计符合项目整体架构,便于维护和文档编写。
总结
Cleanlab项目通过将内部数据估值方法重构为公开API,显著提升了该功能的可用性和灵活性。这一改进不仅使现有用户能够更方便地进行数据质量评估,也为项目未来的数据估值功能扩展奠定了良好基础。对于从事机器学习数据质量工作的从业者来说,这一功能将大大简化他们的工作流程。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00