Gaussian Splatting 项目中的 CUDA 内存溢出问题分析与解决
问题背景
在使用 Gaussian Splatting 项目进行 3D 场景重建时,开发者 MazzARQ 遇到了一个典型的 CUDA 内存溢出问题。当尝试从已训练的模型(30000 次迭代)继续训练时,系统在调用 rasterizer 进行渲染时出现了内存不足的错误。有趣的是,这个问题只在训练过程中出现,而在直接使用 render.py 进行渲染时却能正常工作。
问题现象
错误信息显示系统尝试分配 52.32GB 的显存,而 GPU 的总容量只有 23.68GB。这种显存需求与实际情况明显不符,表明存在某种内存管理或数据处理上的异常。
根本原因分析
经过深入排查,发现问题出在模型参数的获取方式上:
- 正常工作的 render.py 调用方式:
scales = pc._scaling
rotations = pc._rotation
opacity = pc.get_opacity
- 导致内存溢出的 train.py 调用方式:
scales = pc.get_scaling
rotations = pc.get_rotation
opacity = pc.get_opacity
关键区别在于 get_scaling
和 _scaling
的不同行为。get_scaling
方法可能包含了额外的激活函数处理,导致显存需求异常增长。
解决方案
MazzARQ 最终发现自己在保存模型参数时,错误地将 scales 和 rotations 的值与激活状态一起保存。当这些参数被重新加载并再次应用激活函数时,导致了显存需求的爆炸性增长。
正确的做法应该是:
- 确保在保存模型参数时,只保存必要的原始数据,不包含冗余的中间状态
- 在加载模型时,直接访问原始参数而非通过可能包含额外处理的 getter 方法
- 对于 Gaussian Splatting 项目,优先使用
_scaling
和_rotation
这样的直接属性访问方式
经验总结
这个案例提供了几个有价值的经验教训:
-
显存管理:在深度学习项目中,显存使用情况是性能调优的重要指标。异常的高显存需求往往表明数据处理流程存在问题。
-
属性访问与方法调用:理解 Python 中属性访问与方法调用的区别至关重要。前者通常直接返回值,后者可能包含额外的计算逻辑。
-
模型序列化:在保存和加载模型状态时,需要明确区分哪些数据需要持久化,哪些是运行时计算的中间结果。
-
调试技巧:通过对比工作场景和失败场景的差异,可以快速定位问题根源。
对于 Gaussian Splatting 这类计算密集型项目,合理的内存管理和参数处理是保证训练稳定性的关键因素。开发者需要特别注意模型参数的存储和加载方式,避免不必要的计算和内存消耗。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









