Gaussian Splatting 项目中的 CUDA 内存溢出问题分析与解决
问题背景
在使用 Gaussian Splatting 项目进行 3D 场景重建时,开发者 MazzARQ 遇到了一个典型的 CUDA 内存溢出问题。当尝试从已训练的模型(30000 次迭代)继续训练时,系统在调用 rasterizer 进行渲染时出现了内存不足的错误。有趣的是,这个问题只在训练过程中出现,而在直接使用 render.py 进行渲染时却能正常工作。
问题现象
错误信息显示系统尝试分配 52.32GB 的显存,而 GPU 的总容量只有 23.68GB。这种显存需求与实际情况明显不符,表明存在某种内存管理或数据处理上的异常。
根本原因分析
经过深入排查,发现问题出在模型参数的获取方式上:
- 正常工作的 render.py 调用方式:
scales = pc._scaling
rotations = pc._rotation
opacity = pc.get_opacity
- 导致内存溢出的 train.py 调用方式:
scales = pc.get_scaling
rotations = pc.get_rotation
opacity = pc.get_opacity
关键区别在于 get_scaling 和 _scaling 的不同行为。get_scaling 方法可能包含了额外的激活函数处理,导致显存需求异常增长。
解决方案
MazzARQ 最终发现自己在保存模型参数时,错误地将 scales 和 rotations 的值与激活状态一起保存。当这些参数被重新加载并再次应用激活函数时,导致了显存需求的爆炸性增长。
正确的做法应该是:
- 确保在保存模型参数时,只保存必要的原始数据,不包含冗余的中间状态
- 在加载模型时,直接访问原始参数而非通过可能包含额外处理的 getter 方法
- 对于 Gaussian Splatting 项目,优先使用
_scaling和_rotation这样的直接属性访问方式
经验总结
这个案例提供了几个有价值的经验教训:
-
显存管理:在深度学习项目中,显存使用情况是性能调优的重要指标。异常的高显存需求往往表明数据处理流程存在问题。
-
属性访问与方法调用:理解 Python 中属性访问与方法调用的区别至关重要。前者通常直接返回值,后者可能包含额外的计算逻辑。
-
模型序列化:在保存和加载模型状态时,需要明确区分哪些数据需要持久化,哪些是运行时计算的中间结果。
-
调试技巧:通过对比工作场景和失败场景的差异,可以快速定位问题根源。
对于 Gaussian Splatting 这类计算密集型项目,合理的内存管理和参数处理是保证训练稳定性的关键因素。开发者需要特别注意模型参数的存储和加载方式,避免不必要的计算和内存消耗。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0113
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00