QwenLM/Qwen项目LoRA微调显存占用分析与优化建议
2025-05-12 19:45:11作者:薛曦旖Francesca
显存占用现象分析
在QwenLM/Qwen项目中进行LoRA微调时,用户反馈使用4张A10显卡(24GB显存)进行7B-Chat模型微调时显存占用较高。通过分析发现,这种现象属于正常情况,主要源于以下几个技术因素:
- 模型规模影响:7B-Chat模型在FP16精度下,仅模型参数就占用约14GB显存
- 序列长度因素:当序列长度设置为1024时,显存需求会显著增加
- LoRA特性限制:相比全量微调,LoRA虽然减少了可训练参数量,但基础模型仍需完整加载
显存占用技术原理
LoRA微调机制
LoRA(Low-Rank Adaptation)通过在原始模型旁添加低秩矩阵来实现微调,虽然减少了可训练参数,但仍需完整加载基础模型。这使得显存占用主要取决于:
- 基础模型参数量
- 激活值存储需求
- 梯度计算中间结果
多卡训练限制
使用DeepSpeed ZeRO-2进行多卡训练时,由于LoRA可训练参数较少,梯度切分带来的显存优化效果有限。各卡仍需存储完整的模型副本和大部分计算图。
显存优化方案
针对7B模型的优化
-
DeepSpeed ZeRO-3 + CPU Offloading:
- 将优化器状态和梯度分散到多卡
- 将部分计算卸载到CPU内存
- 预计可降低单卡显存占用约30-40%
-
混合精度训练:
- 使用BF16/FP16混合精度
- 结合梯度检查点技术
-
序列长度调整:
- 根据任务需求合理设置max_length
- 过长的序列会显著增加显存消耗
针对14B及以上模型
对于14B-Chat模型,在24GB显卡上建议:
- 使用QLoRA+Int4量化技术
- 采用4-bit量化可将模型显存需求降低至约7GB
- 配合梯度检查点和序列截断技术
实践建议
-
监控工具使用:
- 使用nvidia-smi实时监控显存
- 通过torch.cuda.memory_summary()分析详细占用
-
配置调整策略:
- 从低batch_size开始逐步增加
- 根据显存占用调整gradient_accumulation_steps
-
硬件选择指南:
- 7B模型建议使用至少24GB显存显卡
- 14B模型建议使用40GB以上显存或采用量化方案
通过合理配置和优化技术,可以在有限硬件资源下有效开展Qwen系列模型的高效微调。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0290Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
168
2.05 K

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
101
610

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
199
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
563

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
71

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0