Wagmi项目中BigInt序列化问题的分析与解决方案
问题背景
在Web3开发中,Wagmi作为一个流行的React Hooks库,与区块链交互时经常需要处理大整数(BigInt)类型数据。近期,Wagmi与TanStack Query的最新版本在开发环境中出现了一个关键兼容性问题:所有包含BigInt的查询都会失败。
问题现象
当开发者使用最新版本的Wagmi(2.12.8)和@tanstack/react-query(5.55.3之前版本)时,任何返回包含BigInt数据的查询都会抛出错误。典型的错误信息如下:
StructuralSharing requires data to be JSON serializable. To fix this, turn off structuralSharing or return JSON-serializable data from your queryFn. [["balance",{"address":"0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266","chainId":1}]]: TypeError: Do not know how to serialize a BigInt
这个问题特别影响如余额查询等基础功能,因为这些功能通常会返回包含BigInt类型的数据。
技术原因分析
-
Structural Sharing机制:Wagmi默认启用了React Query的structuralSharing功能,该功能通过比较新旧查询结果来优化性能,避免不必要的重新渲染。
-
BigInt序列化问题:JavaScript的BigInt类型不是JSON可序列化的数据类型,而structuralSharing功能依赖JSON序列化来比较数据差异。
-
版本兼容性:在React Query 5.55.3之前版本中,没有内置对BigInt类型的处理支持,导致包含BigInt的查询结果无法通过structuralSharing的序列化检查。
解决方案
1. 升级React Query版本(推荐)
最彻底的解决方案是升级到@tanstack/react-query的5.55.3或更高版本,该版本已经修复了BigInt序列化问题:
npm install @tanstack/react-query@latest
2. 临时禁用structuralSharing
在无法立即升级的情况下,可以全局禁用structuralSharing:
import { QueryClient } from '@tanstack/react-query';
const queryClient = new QueryClient({
defaultOptions: {
queries: {
structuralSharing: false,
},
},
});
3. 自定义structuralSharing实现
对于需要保留structuralSharing优化又必须处理BigInt的场景,可以实现自定义的structuralSharing逻辑:
import { QueryClient } from '@tanstack/react-query';
import { structuralSharing } from '@wagmi/core/query';
const queryClient = new QueryClient({
defaultOptions: {
queries: {
structuralSharing: (oldData, newData) => {
// 自定义BigInt处理逻辑
if (containsBigInt(newData)) {
return newData;
}
return structuralSharing(oldData, newData);
},
},
},
});
最佳实践建议
-
版本管理:保持Wagmi和相关依赖(特别是React Query)的最新稳定版本。
-
类型检查:在处理区块链数据时,始终考虑BigInt等特殊类型的处理。
-
错误边界:为查询组件添加适当的错误边界处理,增强应用健壮性。
-
开发环境监控:在开发过程中密切关注控制台警告和错误,这类问题通常会在开发阶段显现。
总结
Web3开发中处理区块链数据时会遇到许多传统Web开发不常见的挑战,BigInt序列化问题就是其中之一。通过理解底层机制和采用适当的解决方案,开发者可以确保应用的稳定性和性能。随着生态系统的成熟,这类问题会逐渐被核心库解决,但了解其原理对于处理类似问题仍然很有价值。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00