Wagmi项目中BigInt序列化问题的分析与解决方案
问题背景
在Web3开发中,Wagmi作为一个流行的React Hooks库,与区块链交互时经常需要处理大整数(BigInt)类型数据。近期,Wagmi与TanStack Query的最新版本在开发环境中出现了一个关键兼容性问题:所有包含BigInt的查询都会失败。
问题现象
当开发者使用最新版本的Wagmi(2.12.8)和@tanstack/react-query(5.55.3之前版本)时,任何返回包含BigInt数据的查询都会抛出错误。典型的错误信息如下:
StructuralSharing requires data to be JSON serializable. To fix this, turn off structuralSharing or return JSON-serializable data from your queryFn. [["balance",{"address":"0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266","chainId":1}]]: TypeError: Do not know how to serialize a BigInt
这个问题特别影响如余额查询等基础功能,因为这些功能通常会返回包含BigInt类型的数据。
技术原因分析
-
Structural Sharing机制:Wagmi默认启用了React Query的structuralSharing功能,该功能通过比较新旧查询结果来优化性能,避免不必要的重新渲染。
-
BigInt序列化问题:JavaScript的BigInt类型不是JSON可序列化的数据类型,而structuralSharing功能依赖JSON序列化来比较数据差异。
-
版本兼容性:在React Query 5.55.3之前版本中,没有内置对BigInt类型的处理支持,导致包含BigInt的查询结果无法通过structuralSharing的序列化检查。
解决方案
1. 升级React Query版本(推荐)
最彻底的解决方案是升级到@tanstack/react-query的5.55.3或更高版本,该版本已经修复了BigInt序列化问题:
npm install @tanstack/react-query@latest
2. 临时禁用structuralSharing
在无法立即升级的情况下,可以全局禁用structuralSharing:
import { QueryClient } from '@tanstack/react-query';
const queryClient = new QueryClient({
defaultOptions: {
queries: {
structuralSharing: false,
},
},
});
3. 自定义structuralSharing实现
对于需要保留structuralSharing优化又必须处理BigInt的场景,可以实现自定义的structuralSharing逻辑:
import { QueryClient } from '@tanstack/react-query';
import { structuralSharing } from '@wagmi/core/query';
const queryClient = new QueryClient({
defaultOptions: {
queries: {
structuralSharing: (oldData, newData) => {
// 自定义BigInt处理逻辑
if (containsBigInt(newData)) {
return newData;
}
return structuralSharing(oldData, newData);
},
},
},
});
最佳实践建议
-
版本管理:保持Wagmi和相关依赖(特别是React Query)的最新稳定版本。
-
类型检查:在处理区块链数据时,始终考虑BigInt等特殊类型的处理。
-
错误边界:为查询组件添加适当的错误边界处理,增强应用健壮性。
-
开发环境监控:在开发过程中密切关注控制台警告和错误,这类问题通常会在开发阶段显现。
总结
Web3开发中处理区块链数据时会遇到许多传统Web开发不常见的挑战,BigInt序列化问题就是其中之一。通过理解底层机制和采用适当的解决方案,开发者可以确保应用的稳定性和性能。随着生态系统的成熟,这类问题会逐渐被核心库解决,但了解其原理对于处理类似问题仍然很有价值。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00