Helidon项目构建优化:解决Oracle DB测试导致的磁盘空间问题
背景介绍
在Helidon开源项目的持续集成过程中,开发团队发现了一个影响构建稳定性的问题。当运行包含Oracle数据库测试的构建流程时,GitHub Actions的runner会耗尽磁盘空间,导致构建失败。这个问题特别影响了主仓库的Pull Request验证流程。
问题分析
经过调查,问题的根源在于Oracle数据库的Docker镜像体积较大,在有限的CI环境中运行时,会快速消耗掉runner的可用磁盘空间。这种情况在资源受限的CI环境中尤为明显,特别是在并行运行多个测试任务时。
解决方案
开发团队采取了以下两个关键措施来解决这个问题:
-
移除主仓库PR构建中的Oracle DB测试:将Oracle数据库相关的测试从主仓库的PR验证流程中移除,确保主仓库的构建不会因此类问题而失败。
-
创建独立的GitHub Action工作流:为Oracle数据库测试专门创建了一个独立的GitHub Action工作流,将其与主构建流程分离。这样既可以确保Oracle数据库功能得到验证,又不会影响主构建的稳定性。
技术实现细节
在实现过程中,团队考虑了几个关键因素:
-
构建解耦:保持主仓库构建流程的简洁性和稳定性,将资源密集型测试分离到独立流程中。
-
测试覆盖率:确保虽然测试被分离,但所有必要的功能验证仍然得到执行。
-
维护便利性:通过合理的流程设计,使得这种分离不会显著增加维护成本。
后续优化方向
虽然当前解决方案有效缓解了问题,但团队也考虑了更长期的优化方向:
-
资源优化:探索减少Oracle DB测试所需资源的方法,如使用更轻量级的测试数据或优化测试用例。
-
构建系统改进:随着项目规模扩大,可能需要更完善的构建系统来管理不同类型的测试。
-
环境监控:增强CI环境的监控能力,提前发现类似的资源瓶颈问题。
总结
通过这次优化,Helidon项目不仅解决了当前的构建稳定性问题,还为未来的扩展打下了良好基础。这种将资源密集型测试与核心构建流程分离的做法,是大型项目持续集成实践中的一个典型案例,值得其他面临类似问题的项目参考。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00