training-code 的安装和配置教程
2025-05-19 21:13:52作者:宣聪麟
项目基础介绍和主要编程语言
training-code 是一个开源项目,用于执行监督或无监督的微调因果语言模型。该项目基于 HuggingFace 的 Trainer 类,提供了一些额外的功能,如可选的 xFormers 和 LoRA 训练。主要编程语言是 Python。
项目使用的关键技术和框架
项目使用的关键技术包括:
- HuggingFace Trainer 类:用于训练和微调语言模型。
- xFormers:一种内存高效的注意力机制实现。
- LoRA (Low-Rank Adaptation):一种用于模型微调的技术,能够有效利用 VRAM。
使用的框架主要有:
- Python:基础编程语言。
- PyTorch:深度学习框架。
项目安装和配置的准备工作
在开始安装之前,请确保您的系统中已安装以下依赖项:
- Python 3.x
- pip
- Git
然后,您需要克隆项目仓库到本地:
git clone https://github.com/PygmalionAI/training-code.git
cd training-code
详细安装步骤
-
安装项目所需的依赖:
项目提供了一个
requirements.txt文件,其中列出了所需的依赖项。您可以使用以下命令安装它们:pip install -r requirements.txt如果您希望安装一些额外的包,可以运行:
pip install -r requirements-recommended.txt -
准备训练数据:
训练数据应该是 JSONL(jsonlines)格式的文件,每一行都是一个包含
prompt和generation键的 JSON 对象。损失仅计算generation文本中的标记。以下是一个数据行的例子:
{ "prompt": "你的提示文本", "generation": "对应的生成文本" } -
数据预处理:
使用提供的
tokenize_data_sft.py脚本来对数据进行分词处理:python3 ./preparation/tokenize_data_sft.py --input-file '/path/to/train.jsonl' --output-file '/path/to/train.pythia.arrow' --tokenizer-path 'EleutherAI/pythia-410m-deduped' --max-length 2048对于评估数据,运行:
python3 ./preparation/tokenize_data_sft.py --input-file '/path/to/eval.jsonl' --output-file '/path/to/eval.pythia.arrow' --tokenizer-path 'EleutherAI/pythia-410m-deduped' --max-length 2048 -
开始训练:
主训练入口点是
hf_trainer.py。以下是一个基本的训练命令:./training/hf_trainer.py --model_name_or_path 'EleutherAI/pythia-410m-deduped' --train_file '/path/to/train.pythia.arrow' --eval_file '/path/to/eval.pythia.arrow' --output_dir '/path/to/checkpoints' --do_train --do_eval --report_to 'wandb' ... 其他参数请根据需要调整命令行参数。
完成这些步骤后,您就可以开始使用 training-code 项目进行语言模型的微调了。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110