生产环境下运行Rails的最佳实践
1. 项目介绍
production_rails
是一个开源项目,由 Andrew Kane 创建并维护,旨在提供在生产环境中运行 Ruby on Rails 应用程序的最佳实践。这些实践基于个人经验以及在 Instacart 工作时的所学所得。项目包含了从安全、错误处理、日志记录到性能监控等多个方面的建议和配置示例。
2. 项目快速启动
要快速启动并应用 production_rails
的最佳实践,请按照以下步骤操作:
首先,确保你已经安装了以下依赖:
- Ruby
- Rails
- Node.js
- Yarn (或其他 Node.js 包管理器)
然后,克隆项目到本地:
git clone https://github.com/ankane/production_rails.git
cd production_rails
安装项目依赖:
bundle install
yarn install
配置数据库连接(在 config/database.yml
文件中),然后创建和迁移数据库:
bundle exec rake db:create db:migrate
启动 Rails 服务器:
rails server
现在,你的 Rails 应用应该已经启动并运行在 http://localhost:3000
。
3. 应用案例和最佳实践
以下是 production_rails
项目的几个应用案例和最佳实践:
安全
确保所有的代码都遵循安全最佳实践,并使用工具来保护敏感数据。
错误处理
使用错误报告服务,如 Rollbar,来跟踪和报告应用程序中的错误。
日志记录
使用 Lograge 减少日志量,并配置它以添加 request_id
、user_id
和 params
。
# config/environments/production.rb
config.lograge.enabled = true
config.lograge.custom_options = lambda do |event|
options = event.payload.slice(:request_id, :user_id)
options[:params] = event.payload[:params].except("controller", "action")
options
end
# app/controllers/application_controller.rb
def append_info_to_payload(payload)
super
payload[:request_id] = request.uuid
payload[:user_id] = current_user.id if current_user
end
审计
使用 Audited 库来跟踪对模型的更改。
迁移
使用 Strong Migrations 在开发时捕获不安全的迁移。
Web 请求
使用高性能的 web 服务器,如 Puma,并配置 Rack::Deflater 进行压缩。
背景任务
使用 Sidekiq 作为 Active Job 的队列适配器。
# config/application.rb
config.active_job.queue_adapter = :sidekiq
邮件
对于事务性电子邮件,使用 SendGrid 等电子邮件发送服务。
缓存和性能
使用 Memcached 和 Dalli 进行缓存,使用 Memoist 进行记忆化。
监控
使用性能监控服务,如 New Relic 或 AppSignal。
数据库
为数据库添加超时设置,以避免过长的查询。
# config/database.yml
production:
connect_timeout: 2
checkout_timeout: 5
variables:
statement_timeout: 5000 # ms
分析
使用 Ahoy 或其他第三方服务,如 Amplitude 或 Mixpanel,来跟踪重要事件。
新功能
使用 Rollout 等功能翻转库,轻松启用和禁用新功能。
4. 典型生态项目
production_rails
项目可以与以下生态项目结合使用,以进一步增强 Rails 应用程序的生产环境:
pgHero
: 对于使用 PostgreSQL 的应用程序,可以帮助识别性能问题。Rollbar
: 错误跟踪服务,可以帮助捕捉和报告应用错误。Lograge
: 日志管理工具,用于减少日志文件大小并提高可读性。Sidekiq
: 高性能的背景任务处理库。SendGrid
: 用于发送事务性电子邮件的服务。
通过遵循这些最佳实践和结合使用典型的生态项目,你可以显著提高 Rails 应用程序在生产环境中的性能和稳定性。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









