首页
/ ChatLearner 项目启动与配置教程

ChatLearner 项目启动与配置教程

2025-04-30 09:52:35作者:邬祺芯Juliet

1. 项目目录结构及介绍

ChatLearner 项目目录结构如下所示:

ChatLearner/
├── .gitignore
├── LICENSE
├── README.md
├── config/
│   ├── __init__.py
│   └── setting.py
├── data/
│   ├── __init__.py
│   ├── corpus/
│   │   └── train.txt
│   └── vectors/
│       └── vec.txt
├── models/
│   ├── __init__.py
│   ├── model.py
│   └── trainer.py
├── utils/
│   ├── __init__.py
│   ├── data_helper.py
│   ├── evaluate.py
│   └── process.py
└── run.py
  • .gitignore:指定 Git 忽略的文件和目录。
  • LICENSE:项目使用的许可证。
  • README.md:项目说明文件。
  • config/:配置文件目录。
    • __init__.py:初始化配置模块。
    • setting.py:项目配置文件。
  • data/:数据文件目录。
    • __init__.py:初始化数据模块。
    • corpus/:语料库目录。
      • train.txt:训练数据文件。
    • vectors/:词向量文件目录。
      • vec.txt:词向量文件。
  • models/:模型目录。
    • __init__.py:初始化模型模块。
    • model.py:定义模型结构。
    • trainer.py:定义模型训练和评估方法。
  • utils/:工具模块目录。
    • __init__.py:初始化工具模块。
    • data_helper.py:数据处理工具。
    • evaluate.py:评估工具。
    • process.py:数据处理流程工具。
  • run.py:项目启动文件。

2. 项目的启动文件介绍

项目启动文件为 run.py,该文件负责初始化项目所需的环境,加载配置文件,并启动训练流程。以下为 run.py 的主要代码:

import os
import torch
from config import setting
from models import model
from models import trainer
from data import data_helper

# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 加载配置文件
config = setting.Config()

# 加载数据集
train_data = data_helper.load_data(config.train_file)

# 初始化模型
model = model.MyModel(config)

# 初始化训练器
trainer = trainer.Trainer(config, model, device)

# 训练模型
trainer.train(train_data)

3. 项目的配置文件介绍

项目配置文件为 config/setting.py,该文件包含项目所需的各项参数配置。以下为 setting.py 的主要配置项:

class Config:
    def __init__(self):
        self.model_name = "ChatLearner"
        self.train_file = "data/corpus/train.txt"
        self vectors_file = "data/vectors/vec.txt"
        self.embedding_dim = 100
        self.hidden_dim = 256
        self.vocab_size = 10000
        self learning_rate = 0.001
        self.batch_size = 32
        self.num_epochs = 10
        self.print_every = 10
        # 其他配置项...

setting.py 中,您可以修改模型的名称、训练数据文件路径、词向量文件路径、模型参数等配置项,以满足不同的训练需求。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
27
11
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
flutter_flutterflutter_flutter
暂无简介
Dart
719
173
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
kernelkernel
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
rainbondrainbond
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1