Fugue项目教程:深入理解数据分区(Partitioning)机制
2025-06-10 01:46:39作者:宣海椒Queenly
什么是数据分区?
在分布式计算中,数据分区(Partitioning)是一个核心概念,它决定了数据在集群中的物理分布方式。Fugue作为一个分布式计算框架,提供了强大的分区控制能力,让开发者能够精确控制数据的分组和处理方式。
为什么需要数据分区?
让我们通过一个实际例子来理解分区的重要性。假设我们有以下数据:
import pandas as pd
data = pd.DataFrame({
"date": ["2021-01-01", "2021-01-02", "2021-01-03"] * 3,
"id": (["A"]*3 + ["B"]*3 + ["C"]*3),
"value": [3, 4, 2, 1, 2, 5, 3, 2, 3]
})
我们想计算每个id下value的日差值。如果不指定分区,计算会跨id进行,导致错误结果:
def diff(df: pd.DataFrame) -> pd.DataFrame:
df['diff'] = df['value'].diff()
return df
# 错误:跨id计算差值
transform(data.copy(), diff, schema="*, diff:int").head()
正确使用分区
通过在transform中指定分区,我们可以确保计算只在每个id内部进行:
# 正确:按id分区后计算差值
transform(data.copy(), diff, schema="*, diff:int", partition={"by": "id"}).head()
分区类型详解
1. 基本分区
Fugue支持多种分区方式,最基本的是按列分区:
partition = {"by": "id"} # 按id列分区
2. 带排序的分区
我们可以在分区内对数据进行排序:
# 按id分区,并在每个分区内按value降序排序
partition = {"by": "id", "presort": "value desc"}
这在需要获取每个分区的最大值/最小值时特别有用:
def one_row(df: pd.DataFrame) -> pd.DataFrame:
return df.head(1) # 获取排序后的第一行
transform(data.copy(), one_row, schema="*",
partition={"by":"id", "presort":"value desc"})
3. 自定义分区逻辑
Fugue允许为不同分区应用不同逻辑:
def clip(df: pd.DataFrame) -> pd.DataFrame:
id = df.iloc[0]["id"]
if id == "A":
df = df.assign(value = df['value'].clip(0,4))
else:
df = df.assign(value = df['value'].clip(1,2))
return df
transform(data.copy(), clip, schema="*", partition={"by":"id"}, engine=spark)
分区验证
Fugue支持分区验证,确保数据已正确分区:
# 要求输入数据必须按id分区
def process_partition(df: pd.DataFrame) -> pd.DataFrame:
"""Partition: id"""
# 处理逻辑
return df
如果未按要求分区,Fugue会抛出错误,这在复杂数据处理中非常有用。
分区最佳实践
- 合理选择分区键:分区键应能均匀分布数据,避免数据倾斜
- 避免过度分区:太多小分区会导致调度开销增加
- 利用预排序:对于需要排序的操作,预排序可以提高性能
- 验证分区:使用分区验证确保数据处理正确性
总结
Fugue的分区机制为分布式计算提供了强大的数据控制能力。通过合理使用分区,我们可以:
- 确保计算在正确的数据分组内进行
- 优化数据处理性能
- 实现复杂的分区特定逻辑
- 验证数据分区正确性
掌握Fugue的分区功能是进行高效分布式计算的关键一步。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178