Fugue项目教程:深入理解数据分区(Partitioning)机制
2025-06-10 04:04:23作者:宣海椒Queenly
什么是数据分区?
在分布式计算中,数据分区(Partitioning)是一个核心概念,它决定了数据在集群中的物理分布方式。Fugue作为一个分布式计算框架,提供了强大的分区控制能力,让开发者能够精确控制数据的分组和处理方式。
为什么需要数据分区?
让我们通过一个实际例子来理解分区的重要性。假设我们有以下数据:
import pandas as pd
data = pd.DataFrame({
"date": ["2021-01-01", "2021-01-02", "2021-01-03"] * 3,
"id": (["A"]*3 + ["B"]*3 + ["C"]*3),
"value": [3, 4, 2, 1, 2, 5, 3, 2, 3]
})
我们想计算每个id下value的日差值。如果不指定分区,计算会跨id进行,导致错误结果:
def diff(df: pd.DataFrame) -> pd.DataFrame:
df['diff'] = df['value'].diff()
return df
# 错误:跨id计算差值
transform(data.copy(), diff, schema="*, diff:int").head()
正确使用分区
通过在transform中指定分区,我们可以确保计算只在每个id内部进行:
# 正确:按id分区后计算差值
transform(data.copy(), diff, schema="*, diff:int", partition={"by": "id"}).head()
分区类型详解
1. 基本分区
Fugue支持多种分区方式,最基本的是按列分区:
partition = {"by": "id"} # 按id列分区
2. 带排序的分区
我们可以在分区内对数据进行排序:
# 按id分区,并在每个分区内按value降序排序
partition = {"by": "id", "presort": "value desc"}
这在需要获取每个分区的最大值/最小值时特别有用:
def one_row(df: pd.DataFrame) -> pd.DataFrame:
return df.head(1) # 获取排序后的第一行
transform(data.copy(), one_row, schema="*",
partition={"by":"id", "presort":"value desc"})
3. 自定义分区逻辑
Fugue允许为不同分区应用不同逻辑:
def clip(df: pd.DataFrame) -> pd.DataFrame:
id = df.iloc[0]["id"]
if id == "A":
df = df.assign(value = df['value'].clip(0,4))
else:
df = df.assign(value = df['value'].clip(1,2))
return df
transform(data.copy(), clip, schema="*", partition={"by":"id"}, engine=spark)
分区验证
Fugue支持分区验证,确保数据已正确分区:
# 要求输入数据必须按id分区
def process_partition(df: pd.DataFrame) -> pd.DataFrame:
"""Partition: id"""
# 处理逻辑
return df
如果未按要求分区,Fugue会抛出错误,这在复杂数据处理中非常有用。
分区最佳实践
- 合理选择分区键:分区键应能均匀分布数据,避免数据倾斜
- 避免过度分区:太多小分区会导致调度开销增加
- 利用预排序:对于需要排序的操作,预排序可以提高性能
- 验证分区:使用分区验证确保数据处理正确性
总结
Fugue的分区机制为分布式计算提供了强大的数据控制能力。通过合理使用分区,我们可以:
- 确保计算在正确的数据分组内进行
- 优化数据处理性能
- 实现复杂的分区特定逻辑
- 验证数据分区正确性
掌握Fugue的分区功能是进行高效分布式计算的关键一步。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
422
3.25 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869