使用ESM3模型生成蛋白质序列嵌入的技术指南
2025-07-06 04:07:00作者:段琳惟
概述
ESM3作为蛋白质语言模型的最新代表,在蛋白质序列表示学习方面展现出强大能力。本文将详细介绍如何利用ESM3模型生成蛋白质序列的嵌入表示,这些嵌入可用于下游任务如相似性搜索、功能预测等。
核心功能实现
ESM3提供了简洁的API来生成蛋白质序列的嵌入表示。基本流程包括:
- 初始化模型
- 准备蛋白质序列
- 生成嵌入表示
以下是典型代码示例:
from esm.models.esm3 import ESM3
from esm.sdk.api import ESMProtein, SamplingConfig
from esm.utils.constants.models import ESM3_OPEN_SMALL
# 初始化模型
model = ESM3.from_pretrained(ESM3_OPEN_SMALL, device="cuda")
# 准备蛋白质序列
protein = ESMProtein(sequence="FIFLALLGAAVAFPVDDDDKIVGGYTCGANTVPYQVSLNSGYHFCGGSLINSQWVVSAAHCYKSGIQVRLGEDNINVVEG")
# 生成嵌入
protein_tensor = model.encode(protein)
output = model.forward_and_sample(
protein_tensor,
SamplingConfig(return_per_residue_embeddings=True)
)
高级使用技巧
批量处理
虽然官方API目前主要支持单序列处理,但可以通过以下方式实现批量处理:
- 将多个序列分别编码为张量
- 手动拼接张量形成批次
- 使用模型的底层forward方法处理
结构信息整合
对于有结构信息的蛋白质,可以直接从PDB文件加载:
protein = ESMProtein.from_pdb("protein.pdb")
嵌入归一化
ESM3生成的嵌入值范围较大,建议在下游任务前进行归一化处理,如使用LayerNorm或BatchNorm。
技术细节解析
-
嵌入维度:不同规模的ESM3模型输出维度不同,小型模型通常输出768维嵌入
-
残基级表示:
per_residue_embedding提供每个氨基酸残基的独立表示 -
序列级表示:可通过池化操作(如平均池化)获得整个序列的全局表示
最佳实践建议
-
对于长序列,注意内存限制,可考虑分块处理
-
嵌入生成后建议缓存以避免重复计算
-
下游任务中,简单的线性分类器往往就能取得不错效果
-
不同层级的嵌入可能捕获不同层次的特征,可尝试分层使用
常见问题解决方案
-
值范围问题:ESM3嵌入值范围较大属正常现象,不影响下游使用
-
性能优化:对于大批量处理,建议实现自定义批处理逻辑
-
结构嵌入:目前主要通过PDB加载结构信息生成综合表示
ESM3为蛋白质研究提供了强大的表示学习能力,合理使用这些嵌入表示可以显著提升各类蛋白质相关任务的性能。开发者可根据具体需求选择合适的模型规模和嵌入提取策略。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
389
Ascend Extension for PyTorch
Python
248
284
暂无简介
Dart
701
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
274
329
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
280
126
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871