使用ESM3模型生成蛋白质序列嵌入的技术指南
2025-07-06 13:49:49作者:段琳惟
概述
ESM3作为蛋白质语言模型的最新代表,在蛋白质序列表示学习方面展现出强大能力。本文将详细介绍如何利用ESM3模型生成蛋白质序列的嵌入表示,这些嵌入可用于下游任务如相似性搜索、功能预测等。
核心功能实现
ESM3提供了简洁的API来生成蛋白质序列的嵌入表示。基本流程包括:
- 初始化模型
- 准备蛋白质序列
- 生成嵌入表示
以下是典型代码示例:
from esm.models.esm3 import ESM3
from esm.sdk.api import ESMProtein, SamplingConfig
from esm.utils.constants.models import ESM3_OPEN_SMALL
# 初始化模型
model = ESM3.from_pretrained(ESM3_OPEN_SMALL, device="cuda")
# 准备蛋白质序列
protein = ESMProtein(sequence="FIFLALLGAAVAFPVDDDDKIVGGYTCGANTVPYQVSLNSGYHFCGGSLINSQWVVSAAHCYKSGIQVRLGEDNINVVEG")
# 生成嵌入
protein_tensor = model.encode(protein)
output = model.forward_and_sample(
protein_tensor,
SamplingConfig(return_per_residue_embeddings=True)
)
高级使用技巧
批量处理
虽然官方API目前主要支持单序列处理,但可以通过以下方式实现批量处理:
- 将多个序列分别编码为张量
- 手动拼接张量形成批次
- 使用模型的底层forward方法处理
结构信息整合
对于有结构信息的蛋白质,可以直接从PDB文件加载:
protein = ESMProtein.from_pdb("protein.pdb")
嵌入归一化
ESM3生成的嵌入值范围较大,建议在下游任务前进行归一化处理,如使用LayerNorm或BatchNorm。
技术细节解析
-
嵌入维度:不同规模的ESM3模型输出维度不同,小型模型通常输出768维嵌入
-
残基级表示:
per_residue_embedding
提供每个氨基酸残基的独立表示 -
序列级表示:可通过池化操作(如平均池化)获得整个序列的全局表示
最佳实践建议
-
对于长序列,注意内存限制,可考虑分块处理
-
嵌入生成后建议缓存以避免重复计算
-
下游任务中,简单的线性分类器往往就能取得不错效果
-
不同层级的嵌入可能捕获不同层次的特征,可尝试分层使用
常见问题解决方案
-
值范围问题:ESM3嵌入值范围较大属正常现象,不影响下游使用
-
性能优化:对于大批量处理,建议实现自定义批处理逻辑
-
结构嵌入:目前主要通过PDB加载结构信息生成综合表示
ESM3为蛋白质研究提供了强大的表示学习能力,合理使用这些嵌入表示可以显著提升各类蛋白质相关任务的性能。开发者可根据具体需求选择合适的模型规模和嵌入提取策略。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133