使用ESM3模型生成蛋白质序列嵌入的技术指南
2025-07-06 19:48:21作者:段琳惟
概述
ESM3作为蛋白质语言模型的最新代表,在蛋白质序列表示学习方面展现出强大能力。本文将详细介绍如何利用ESM3模型生成蛋白质序列的嵌入表示,这些嵌入可用于下游任务如相似性搜索、功能预测等。
核心功能实现
ESM3提供了简洁的API来生成蛋白质序列的嵌入表示。基本流程包括:
- 初始化模型
- 准备蛋白质序列
- 生成嵌入表示
以下是典型代码示例:
from esm.models.esm3 import ESM3
from esm.sdk.api import ESMProtein, SamplingConfig
from esm.utils.constants.models import ESM3_OPEN_SMALL
# 初始化模型
model = ESM3.from_pretrained(ESM3_OPEN_SMALL, device="cuda")
# 准备蛋白质序列
protein = ESMProtein(sequence="FIFLALLGAAVAFPVDDDDKIVGGYTCGANTVPYQVSLNSGYHFCGGSLINSQWVVSAAHCYKSGIQVRLGEDNINVVEG")
# 生成嵌入
protein_tensor = model.encode(protein)
output = model.forward_and_sample(
protein_tensor,
SamplingConfig(return_per_residue_embeddings=True)
)
高级使用技巧
批量处理
虽然官方API目前主要支持单序列处理,但可以通过以下方式实现批量处理:
- 将多个序列分别编码为张量
- 手动拼接张量形成批次
- 使用模型的底层forward方法处理
结构信息整合
对于有结构信息的蛋白质,可以直接从PDB文件加载:
protein = ESMProtein.from_pdb("protein.pdb")
嵌入归一化
ESM3生成的嵌入值范围较大,建议在下游任务前进行归一化处理,如使用LayerNorm或BatchNorm。
技术细节解析
-
嵌入维度:不同规模的ESM3模型输出维度不同,小型模型通常输出768维嵌入
-
残基级表示:
per_residue_embedding提供每个氨基酸残基的独立表示 -
序列级表示:可通过池化操作(如平均池化)获得整个序列的全局表示
最佳实践建议
-
对于长序列,注意内存限制,可考虑分块处理
-
嵌入生成后建议缓存以避免重复计算
-
下游任务中,简单的线性分类器往往就能取得不错效果
-
不同层级的嵌入可能捕获不同层次的特征,可尝试分层使用
常见问题解决方案
-
值范围问题:ESM3嵌入值范围较大属正常现象,不影响下游使用
-
性能优化:对于大批量处理,建议实现自定义批处理逻辑
-
结构嵌入:目前主要通过PDB加载结构信息生成综合表示
ESM3为蛋白质研究提供了强大的表示学习能力,合理使用这些嵌入表示可以显著提升各类蛋白质相关任务的性能。开发者可根据具体需求选择合适的模型规模和嵌入提取策略。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Claude Code Router核心架构解析:多模型路由机制深度剖析 Meetily用户手册:高效会议记录与AI总结技巧从MPM88到MPM99:Taichi中速度梯度计算的数学原理与工程实现让监控不再卡顿:Frigate GPU加速实战优化指南AutoKeras命令行工具详解:无需代码的模型训练 GaussianSplats3D项目加载.ksplat文件问题解析 ngosang/trackerslist项目新增Tracker服务器列表分析 FreeRADIUS字典文件(dictionary.5)深度解析与使用指南Hydro在线评测系统未来发展规划:完整技术路线图与功能演进指南【限时免费】 cloudpods:多云混合云统一管理平台
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350