melodyExtraction_JDC 项目亮点解析
2025-06-12 08:40:40作者:申梦珏Efrain
1. 项目基础介绍
melodyExtraction_JDC 是一个基于深度学习的音乐旋律提取开源项目。它采用了一种联合检测和分类的网络(Joint Detection and Classification, JDC)来进行歌声的检测和音高估计。该项目旨在解决音乐处理领域中的旋律提取问题,为音乐创作和音乐分析提供了强有力的工具。
2. 项目代码目录及介绍
项目的主要目录结构如下:
notebooks/: 包含用于数据分析和模型实验的Jupyter笔记本文件。weights/: 存储训练好的模型权重文件。LICENSE: 项目的开源许可文件,采用MIT许可。README.md: 项目说明文件,介绍了项目的基本信息和如何使用。featureExtraction.py: 特征提取相关代码,用于从音频文件中提取特征。melodyExtraction_JDC.py: 主程序文件,实现了旋律提取的核心功能。model.py: 定义了项目所使用的神经网络模型结构。test_audio_file.mp4: 测试音频文件,用于演示项目功能。x_data_mean_total_31.npy和x_data_std_total_31.npy: 存储音频数据集的均值和标准差。
3. 项目亮点功能拆解
- 实时音频处理: 支持实时音频输入,并对输入音频进行旋律提取。
- 命令行操作: 可以通过命令行参数来指定输入音频文件、GPU索引和输出目录,便于操作。
- 高精度预测: 通过深度学习模型,能够预测音高标签,涵盖整个声乐范围,并且具有高分辨率。
4. 项目主要技术亮点拆解
- 联合检测和分类网络: 通过一个主网络预测音高轮廓,以及一个辅助网络来检测歌声,两者通过一个联合旋律损失函数连接。
- 卷积循环神经网络: 主网络使用了带有残差连接的卷积循环神经网络结构,增强了模型的学习能力和泛化能力。
- 多级特征共享: 辅助网络利用从主网络共享的多级特征来提高歌声检测的准确性。
5. 与同类项目对比的亮点
- 性能优越: 在多个旋律提取和歌声检测数据集上的评估结果显示,该项目的性能优于现有主流算法。
- 跨数据集评估: 项目不仅在本数据集上表现良好,还能在跨数据集上进行有效评估,显示了模型的泛化能力。
- 开源友好: 采用了MIT开源许可证,为开源社区提供了自由使用和修改的权利。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C097
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.55 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
232
97
暂无简介
Dart
728
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
287
320
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
445
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19