melodyExtraction_JDC 项目亮点解析
2025-06-12 08:40:40作者:申梦珏Efrain
1. 项目基础介绍
melodyExtraction_JDC 是一个基于深度学习的音乐旋律提取开源项目。它采用了一种联合检测和分类的网络(Joint Detection and Classification, JDC)来进行歌声的检测和音高估计。该项目旨在解决音乐处理领域中的旋律提取问题,为音乐创作和音乐分析提供了强有力的工具。
2. 项目代码目录及介绍
项目的主要目录结构如下:
notebooks/: 包含用于数据分析和模型实验的Jupyter笔记本文件。weights/: 存储训练好的模型权重文件。LICENSE: 项目的开源许可文件,采用MIT许可。README.md: 项目说明文件,介绍了项目的基本信息和如何使用。featureExtraction.py: 特征提取相关代码,用于从音频文件中提取特征。melodyExtraction_JDC.py: 主程序文件,实现了旋律提取的核心功能。model.py: 定义了项目所使用的神经网络模型结构。test_audio_file.mp4: 测试音频文件,用于演示项目功能。x_data_mean_total_31.npy和x_data_std_total_31.npy: 存储音频数据集的均值和标准差。
3. 项目亮点功能拆解
- 实时音频处理: 支持实时音频输入,并对输入音频进行旋律提取。
- 命令行操作: 可以通过命令行参数来指定输入音频文件、GPU索引和输出目录,便于操作。
- 高精度预测: 通过深度学习模型,能够预测音高标签,涵盖整个声乐范围,并且具有高分辨率。
4. 项目主要技术亮点拆解
- 联合检测和分类网络: 通过一个主网络预测音高轮廓,以及一个辅助网络来检测歌声,两者通过一个联合旋律损失函数连接。
- 卷积循环神经网络: 主网络使用了带有残差连接的卷积循环神经网络结构,增强了模型的学习能力和泛化能力。
- 多级特征共享: 辅助网络利用从主网络共享的多级特征来提高歌声检测的准确性。
5. 与同类项目对比的亮点
- 性能优越: 在多个旋律提取和歌声检测数据集上的评估结果显示,该项目的性能优于现有主流算法。
- 跨数据集评估: 项目不仅在本数据集上表现良好,还能在跨数据集上进行有效评估,显示了模型的泛化能力。
- 开源友好: 采用了MIT开源许可证,为开源社区提供了自由使用和修改的权利。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660