melodyExtraction_JDC 项目亮点解析
2025-06-12 19:56:23作者:申梦珏Efrain
1. 项目基础介绍
melodyExtraction_JDC 是一个基于深度学习的音乐旋律提取开源项目。它采用了一种联合检测和分类的网络(Joint Detection and Classification, JDC)来进行歌声的检测和音高估计。该项目旨在解决音乐处理领域中的旋律提取问题,为音乐创作和音乐分析提供了强有力的工具。
2. 项目代码目录及介绍
项目的主要目录结构如下:
notebooks/: 包含用于数据分析和模型实验的Jupyter笔记本文件。weights/: 存储训练好的模型权重文件。LICENSE: 项目的开源许可文件,采用MIT许可。README.md: 项目说明文件,介绍了项目的基本信息和如何使用。featureExtraction.py: 特征提取相关代码,用于从音频文件中提取特征。melodyExtraction_JDC.py: 主程序文件,实现了旋律提取的核心功能。model.py: 定义了项目所使用的神经网络模型结构。test_audio_file.mp4: 测试音频文件,用于演示项目功能。x_data_mean_total_31.npy和x_data_std_total_31.npy: 存储音频数据集的均值和标准差。
3. 项目亮点功能拆解
- 实时音频处理: 支持实时音频输入,并对输入音频进行旋律提取。
- 命令行操作: 可以通过命令行参数来指定输入音频文件、GPU索引和输出目录,便于操作。
- 高精度预测: 通过深度学习模型,能够预测音高标签,涵盖整个声乐范围,并且具有高分辨率。
4. 项目主要技术亮点拆解
- 联合检测和分类网络: 通过一个主网络预测音高轮廓,以及一个辅助网络来检测歌声,两者通过一个联合旋律损失函数连接。
- 卷积循环神经网络: 主网络使用了带有残差连接的卷积循环神经网络结构,增强了模型的学习能力和泛化能力。
- 多级特征共享: 辅助网络利用从主网络共享的多级特征来提高歌声检测的准确性。
5. 与同类项目对比的亮点
- 性能优越: 在多个旋律提取和歌声检测数据集上的评估结果显示,该项目的性能优于现有主流算法。
- 跨数据集评估: 项目不仅在本数据集上表现良好,还能在跨数据集上进行有效评估,显示了模型的泛化能力。
- 开源友好: 采用了MIT开源许可证,为开源社区提供了自由使用和修改的权利。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
659
150
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
657
293
仓颉编译器源码及 cjdb 调试工具。
C++
131
865
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言运行时与标准库。
Cangjie
138
874