Swift模型部署中的显存分配策略:pt与vllm后端对比分析
2025-05-31 15:27:42作者:鲍丁臣Ursa
在模型部署过程中,显存分配是一个关键的技术问题。本文将以modelscope/swift项目为例,深入分析不同推理后端(pt和vllm)在显存分配策略上的差异,帮助开发者更好地进行多GPU环境下的模型部署。
pt后端的显存分配策略
pt(即PyTorch)后端支持通过device_map和max_memory参数进行精细化的显存分配控制。这种分配方式特别适合异构GPU环境,例如当不同GPU的显存容量不一致时。
使用示例:
swift deploy --model models/deepseek-r1-emo-7b \
--infer_backend pt \
--device_map="auto" \
--max_memory '{0: "3GB", 1: "10GB"}'
这种配置方式允许开发者:
- 精确控制每张GPU的显存使用上限
- 实现模型层的自动分配
- 避免单卡显存不足的问题
vllm后端的显存分配策略
与pt后端不同,vllm后端采用了完全不同的显存分配机制。vllm不支持device_map和max_memory参数,而是通过tensor_parallel_size参数来实现模型并行。
使用示例:
swift deploy --model models/deepseek-r1-emo-7b \
--infer_backend vllm \
--tensor_parallel_size 2
vllm的显存分配特点:
- 采用张量并行而非层并行
- 显存分配是均匀的,无法指定不同GPU的不同显存配额
- 更适合同构GPU环境
技术选型建议
在实际项目中选择合适的后端时,应考虑以下因素:
-
硬件环境:
- 同构GPU集群:优先考虑vllm
- 异构GPU环境:选择pt后端更灵活
-
性能需求:
- 高吞吐量场景:vllm通常表现更好
- 精细控制需求:pt后端更合适
-
模型特性:
- 超大模型:vllm的张量并行可能更高效
- 中等规模模型:两者均可,根据其他需求决定
常见问题解决方案
-
显存分配不均问题:
- pt后端:检查max_memory参数格式是否正确
- vllm后端:确保tensor_parallel_size设置合理
-
显存溢出问题:
- pt后端:适当降低max_memory值
- vllm后端:减少tensor_parallel_size或使用更小的量化版本
-
性能优化:
- 多尝试几种参数组合
- 监控GPU利用率进行调整
通过理解这些显存分配策略的差异,开发者可以更高效地部署模型,充分利用硬件资源,获得最佳的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178