Firebase Tools v14 版本中 Artifact Registry 清理策略部署问题解析
问题背景
在 Firebase Tools v14 版本中,许多开发者在使用 GitHub Actions 部署 Next.js 应用时遇到了一个共同的问题:部署过程中 Firebase CLI 会尝试自动设置 Artifact Registry 的清理策略,但即使服务账户拥有足够权限,这一操作仍会失败并导致整个部署流程中断。
问题现象
当开发者使用 Firebase Tools v14 进行部署时,虽然应用构建和函数部署都能成功完成,但在最后阶段会出现以下错误提示:
Error: Functions successfully deployed but could not set up cleanup policy in location us-central1. Pass the --force option to automatically set up a cleanup policy or run 'firebase functions:artifacts:setpolicy' to manually set up a cleanup policy.
这个错误会导致 CI/CD 流程以失败状态退出,即使实际部署已经成功完成。
技术分析
Artifact Registry 清理策略的作用
Artifact Registry 是 Google Cloud 提供的容器镜像存储服务。Firebase Functions 在部署时会生成容器镜像并存储在 Artifact Registry 中。清理策略可以自动删除旧的镜像,避免存储空间被无用镜像占用而产生额外费用。
问题根源
经过开发者社区的深入讨论和测试,发现这个问题主要与以下因素有关:
-
权限验证逻辑:Firebase CLI v14 在验证清理策略时存在逻辑缺陷,即使策略已设置或服务账户有足够权限,仍会错误地报告失败。
-
CI/CD 环境差异:在 GitHub Actions 等 CI 环境中,服务账户的权限验证方式可能与本地环境不同,导致策略设置失败。
-
版本兼容性:v14 版本引入的新特性与现有部署流程存在兼容性问题。
解决方案
临时解决方案
-
降级到 v13 版本: 许多开发者报告降级到 firebase-tools@13.35.1 可以解决此问题:
npm install -g firebase-tools@13.35.1
-
手动设置清理策略: 在部署前手动设置清理策略:
firebase functions:artifacts:setpolicy --location us-central1 --project PROJECT_ID --days 7
-
使用 --force 参数: 在部署命令中添加 --force 参数:
firebase deploy --force
-
GitHub Actions 工作流中添加策略设置步骤: 在 GitHub Actions 工作流中添加专门的步骤来设置清理策略。
官方修复
Firebase 团队已经意识到这个问题,并在后续版本中进行了修复:
- 将错误信息改为警告信息,避免中断 CI/CD 流程
- 修复了权限验证逻辑,确保正确识别已设置的清理策略
最佳实践建议
-
明确设置清理策略:建议在项目初始化阶段就明确设置 Artifact Registry 的清理策略,避免依赖自动设置。
-
权限配置:确保服务账户拥有 Artifact Registry Admin 和 Firebase Admin 权限。
-
版本控制:在 CI/CD 流程中固定 firebase-tools 的版本,避免自动升级带来的意外问题。
-
监控存储使用:即使设置了清理策略,也应定期检查 Artifact Registry 的存储使用情况。
总结
这个问题展示了在云服务自动化工具升级过程中可能遇到的兼容性挑战。Firebase 团队已经响应社区反馈并提供了修复方案。对于开发者而言,理解底层服务(如 Artifact Registry)的工作原理,掌握问题排查方法,能够更高效地解决类似问题。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









