LSTM Pose Machines —— 视频人体姿态估计的新里程碑
2024-05-23 13:03:05作者:蔡怀权
LSTM Pose Machines —— 视频人体姿态估计的新里程碑

LSTM Pose Machines 是一个基于长短期记忆网络(LSTM)的开源项目,用于视频中人体姿态的精确估计。该代码库由Yue Luo等人在2018年CVPR会议上发表的研究成果支持,提供了一个高效且准确的人体关键点检测解决方案。
项目介绍
这个项目的核心是利用LSTM模型捕捉视频序列中的时序信息,以提高对连续帧中人体姿态的预测精度。相较于传统的单一图像姿态估计算法,如 Convolutional Pose Machines,LSTM Pose Machines 在处理动态场景和运动变化上表现更优。它不仅提供训练代码,还提供了预训练模型,便于快速测试和应用。
项目技术分析
- LSTM 网络结构:LSTM Pose Machines 使用LSTM单元来学习序列数据中的长期依赖性,有效处理了由于遮挡、快速运动和低分辨率导致的视觉挑战。
- 数据预处理:所有数据被转换为.mat文件进行存储,便于后续的训练和测试过程。
- 训练流程:首先训练一个基于CPMs的“单图模型”,然后使用这个模型初始化LSTM Pose Machines,进一步在视频数据上进行训练,从而获得更稳定的人体姿态估计结果。
应用场景与技术价值
LSTM Pose Machines 可广泛应用于以下几个领域:
- 智能监控:实时人体姿态估计,用于安全监控、行为识别等。
- 动作识别:通过分析连续的姿态变化,实现复杂动作的精准识别。
- 虚拟现实:结合深度相机,实现用户手势控制或角色动画生成。
- 体育分析:监测运动员的动作,进行技术分析和训练指导。
项目特点
- 高效:利用LSTM捕捉时序信息,提高姿态估计准确性。
- 可扩展:易于调整的模型参数,适应不同场景和任务需求。
- 全面支持:提供详细的预处理脚本和训练指南,方便开发者快速上手。
- 出色性能:在PENN和JHMDB数据集上的实验结果显示,相比同类方法,LSTM Pose Machines 具有更高的预测精度。
如果你想在你的项目中添加先进的视频人体姿态估计功能,或者对LSTM在计算机视觉领域的应用感兴趣,LSTM Pose Machines 是一个值得尝试的优秀资源。立即下载并探索,开启你的智能视觉之旅吧!
git clone https://github.com/lawy623/LSTM_Pose_Machines.git
cd LSTM_Pose_Machines
别忘了查看项目文档以获取完整安装和使用指南!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218