TextDistance 开源项目教程
项目介绍
TextDistance 是一个用 Python 编写的库,专门用于计算两个文本之间的距离。它支持多种算法,包括编辑距离(如 Levenshtein、Hamming、Jaro-Winkler 等)、序列距离(如 Longest Common Subsequence)、集合距离(如 Jaccard)等。这个库非常适合用于文本相似度分析、拼写检查、数据清洗等场景。
项目快速启动
安装
首先,你需要安装 TextDistance 库。你可以通过 pip 来安装:
pip install textdistance
基本使用
以下是一个简单的示例,展示如何使用 TextDistance 计算两个字符串之间的 Levenshtein 距离:
import textdistance
# 计算两个字符串之间的 Levenshtein 距离
distance = textdistance.levenshtein('kitten', 'sitting')
print(f"Levenshtein 距离: {distance}")
应用案例和最佳实践
文本相似度分析
TextDistance 可以用于分析两个文本的相似度。例如,你可以使用 Jaccard 距离来比较两个文档的相似性:
import textdistance
doc1 = "这是一个测试文档。"
doc2 = "这是另一个测试文档。"
# 使用 Jaccard 距离
distance = textdistance.jaccard(doc1, doc2)
print(f"Jaccard 距离: {distance}")
拼写检查
TextDistance 也可以用于拼写检查。例如,你可以使用 Levenshtein 距离来找到与输入单词最接近的正确单词:
import textdistance
correct_words = ['apple', 'banana', 'cherry', 'date', 'elderberry']
input_word = 'aplpe'
# 找到最接近的正确单词
closest_word = min(correct_words, key=lambda word: textdistance.levenshtein(word, input_word))
print(f"最接近的正确单词: {closest_word}")
典型生态项目
TextDistance 可以与其他 Python 库结合使用,以增强其功能。以下是一些典型的生态项目:
NLTK
Natural Language Toolkit(NLTK)是一个用于自然语言处理的库。你可以结合 NLTK 和 TextDistance 来进行更复杂的文本分析任务,如词性标注、命名实体识别等。
Pandas
Pandas 是一个用于数据操作和分析的库。你可以使用 Pandas 来处理和分析大量文本数据,并结合 TextDistance 来进行文本相似度分析。
Scikit-learn
Scikit-learn 是一个用于机器学习的库。你可以使用 TextDistance 来计算文本特征,然后将这些特征用于机器学习模型中,如文本分类、聚类等。
通过结合这些生态项目,你可以扩展 TextDistance 的功能,实现更复杂的文本处理和分析任务。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00