TextDistance 开源项目教程
项目介绍
TextDistance 是一个用 Python 编写的库,专门用于计算两个文本之间的距离。它支持多种算法,包括编辑距离(如 Levenshtein、Hamming、Jaro-Winkler 等)、序列距离(如 Longest Common Subsequence)、集合距离(如 Jaccard)等。这个库非常适合用于文本相似度分析、拼写检查、数据清洗等场景。
项目快速启动
安装
首先,你需要安装 TextDistance 库。你可以通过 pip 来安装:
pip install textdistance
基本使用
以下是一个简单的示例,展示如何使用 TextDistance 计算两个字符串之间的 Levenshtein 距离:
import textdistance
# 计算两个字符串之间的 Levenshtein 距离
distance = textdistance.levenshtein('kitten', 'sitting')
print(f"Levenshtein 距离: {distance}")
应用案例和最佳实践
文本相似度分析
TextDistance 可以用于分析两个文本的相似度。例如,你可以使用 Jaccard 距离来比较两个文档的相似性:
import textdistance
doc1 = "这是一个测试文档。"
doc2 = "这是另一个测试文档。"
# 使用 Jaccard 距离
distance = textdistance.jaccard(doc1, doc2)
print(f"Jaccard 距离: {distance}")
拼写检查
TextDistance 也可以用于拼写检查。例如,你可以使用 Levenshtein 距离来找到与输入单词最接近的正确单词:
import textdistance
correct_words = ['apple', 'banana', 'cherry', 'date', 'elderberry']
input_word = 'aplpe'
# 找到最接近的正确单词
closest_word = min(correct_words, key=lambda word: textdistance.levenshtein(word, input_word))
print(f"最接近的正确单词: {closest_word}")
典型生态项目
TextDistance 可以与其他 Python 库结合使用,以增强其功能。以下是一些典型的生态项目:
NLTK
Natural Language Toolkit(NLTK)是一个用于自然语言处理的库。你可以结合 NLTK 和 TextDistance 来进行更复杂的文本分析任务,如词性标注、命名实体识别等。
Pandas
Pandas 是一个用于数据操作和分析的库。你可以使用 Pandas 来处理和分析大量文本数据,并结合 TextDistance 来进行文本相似度分析。
Scikit-learn
Scikit-learn 是一个用于机器学习的库。你可以使用 TextDistance 来计算文本特征,然后将这些特征用于机器学习模型中,如文本分类、聚类等。
通过结合这些生态项目,你可以扩展 TextDistance 的功能,实现更复杂的文本处理和分析任务。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00