AssetGrid 项目下载及安装教程
2024-12-07 05:52:54作者:尤辰城Agatha
1. 项目介绍
AssetGrid 是一个自托管的数据驱动个人财务管理工具。它旨在提供一个灵活且强大的工具,能够适应多种使用场景,同时拥有一个不会妨碍用户操作的用户界面。AssetGrid 不仅支持预算管理,还可以用于跟踪未支付的账单、收据、投资,以及提取关于消费习惯的随机统计数据。
AssetGrid 的工作流程基于以下步骤:
- 导入数据:目前支持 CSV 导入和手动输入。
- 分类和处理数据:当前支持为交易分配类别,未来计划添加自定义元数据和标签。
- 自动化处理:用户可以配置自动化流程来自动处理数据。
- 浏览数据:AssetGrid 提供了一个强大的报告工具,允许用户从财务数据中提取所需信息。
2. 项目下载位置
AssetGrid 项目的源代码托管在 GitHub 上。用户可以通过以下命令克隆项目到本地:
git clone https://github.com/assetgrid/assetgridapp.git
3. 项目安装环境配置
3.1 系统要求
- 操作系统:Linux、Windows、macOS
- 运行时环境:.NET Core 运行时
- 数据库:SQLite、MySQL/MariaDB
3.2 环境配置示例
3.2.1 安装 .NET Core 运行时
在 Linux 系统上,可以通过以下命令安装 .NET Core 运行时:
sudo apt-get update
sudo apt-get install -y dotnet-runtime-6.0
在 Windows 系统上,可以从 Microsoft 官方网站 下载并安装 .NET Core 运行时。
3.2.2 安装 Node.js 和 npm
AssetGrid 的前端部分使用 Node.js 和 npm 进行构建。可以通过以下命令安装 Node.js 和 npm:
sudo apt-get install -y nodejs npm
3.2.3 数据库配置
AssetGrid 支持 SQLite 和 MySQL/MariaDB。以下是配置 SQLite 的示例:
{
"ConnectionStrings": {
"DefaultConnection": "Data Source=assetgrid.db"
}
}
4. 项目安装方式
4.1 使用 Docker 安装
AssetGrid 推荐使用 Docker 进行安装。以下是一个使用 Docker Compose 的示例配置文件:
version: "3.1"
services:
assetgrid:
image: assetgrid/assetgrid
container_name: assetgrid
volumes:
- assetgrid-data:/usr/share/assetgrid/assetgrid_data
ports:
- 80:8080
volumes:
assetgrid-data:
4.2 手动安装
如果不想使用 Docker,可以手动安装 AssetGrid。首先,确保已经安装了 .NET Core 运行时和 Node.js。
- 克隆项目到本地:
git clone https://github.com/assetgrid/assetgridapp.git
cd assetgridapp
- 构建前端:
cd frontend
npm install
npm run build
- 构建后端:
cd ../backend
dotnet build
- 运行应用程序:
dotnet run --urls=http://0.0.0.0:8080/
5. 项目处理脚本
AssetGrid 提供了一些处理脚本,用于自动化数据处理。以下是一个简单的示例脚本:
#!/bin/bash
# 导入数据
python3 import_data.py
# 分类数据
python3 categorize_data.py
# 生成报告
python3 generate_report.py
这些脚本可以根据用户的具体需求进行定制和扩展。
通过以上步骤,用户可以顺利下载并安装 AssetGrid 项目,并开始使用其强大的财务管理功能。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137